基于自适应多点法的sCMOS实时非均匀性校正

张涛, 李新阳, 李剑峰, 等. 基于自适应多点法的sCMOS实时非均匀性校正[J]. 光电工程,2021,48(5): 210036. doi: 10.12086/oee.2021.210036
引用本文: 张涛, 李新阳, 李剑峰, 等. 基于自适应多点法的sCMOS实时非均匀性校正[J]. 光电工程,2021,48(5): 210036. doi: 10.12086/oee.2021.210036
Zhang T, Li X Y, Li J F, et al. sCMOS real-time nonuniformity correction based on adaptive multipoint method[J]. Opto-Electron Eng, 2021, 48(5): 210036. doi: 10.12086/oee.2021.210036
Citation: Zhang T, Li X Y, Li J F, et al. sCMOS real-time nonuniformity correction based on adaptive multipoint method[J]. Opto-Electron Eng, 2021, 48(5): 210036. doi: 10.12086/oee.2021.210036

基于自适应多点法的sCMOS实时非均匀性校正

  • 基金项目:
    国家自然科学基金资助项目(11573066);云南省基础研究计划(2019FA001)
详细信息
    作者简介:
    *通讯作者: 李新阳(1971-),男,博士,研究员,主要从事信号与信息处理的研究. E-mail: xyli@ioe.ac.cn
  • 中图分类号: TN36

sCMOS real-time nonuniformity correction based on adaptive multipoint method

  • Fund Project: National Natural Science Foundation of China (11573066) and Yunnan Province Basic Research Plan (2019FA001)
More Information
  • 为改善sCMOS读出电路工艺偏差导致的非均匀性问题,本文提出了自适应多点非均匀性校正方法。算法首先以搜寻最小范数点、阈值比较的方式分别确定最优分段点的位置以及最佳分段数量,然后再根据这些分段信息在各区间段分别进行两点校正。通过该自适应方法可有效改善传统多点法中由于分段参数选择不当导致的校正性能下降。同时,为实现实时的非均匀性校正,文中根据自适应多点法的算法特点,提出了一种与之匹配的嵌入式数据串流校正方案,可在不影响现有相机采集结构以及采集速率的情况下实现非均匀性的校正。

  • Overview: sCMOS is a photoelectric detection device widely used in scientific research field today. The parameter mismatch between the column amplifiers may occur due to its process, which leads to the nonuniformity problem. The methods for nonuniformity correction can be divided into scene-based and calibration-based methods. In the real-time application scenarios, the calibration-based multipoint nonuniformity correction method is widely used in engineering because of its simple calculation and high accuracy. However, the multipoint correction method has some difficulties in selecting the location and number of segments. The calibration-based adaptive multipoint correction method proposed in this paper can automatically obtain the optimal location and optimal number of segments by searching for the maximum error point and the number of segments closest to the accuracy threshold. This method can effectively avoid the degradation of the correction performance caused by improper selection of segment parameters in traditional multipoint methods. The basic principle is to search for the maximum error point between the non-linear photoelectric response curve of each pixel and the straight line composed of the first and last points as the basis for selecting the segment location, and to calculate the error accuracy of the segment as the basis for selecting the number of segments. After obtaining the segment points and the number of segments, the two-point method can be repeated for each linear segment to correct each segment straight line to the reference line, where the reference curve is obtained by fitting the global average point. Experimental results show that the sCMOS image processed by the adaptive multipoint correction method has better PRUN and more uniform and stable column mean curve than traditional single-point, two-point and average multipoint methods. For an image acquisition system where the acquisition software and the system structure are solidified, an embedded data series correction scheme is presented according to the characteristics of the adaptive multipoint method in order to achieve nonuniformity correction while maintaining the existing acquisition structure. By comparing the decoded data from the sCMOS camera with the lookup table, the offset and gain correction coefficients for the matching segment period and the corresponding period are determined. Subsequent multipliers and adders are used to correct the linear segment to the reference line using a two-point method. Finally, the corrected data is encoded and output in the original data format. With this scheme, a camera with a frame rate of 200 frames per second at the 2k×2k resolution used in the experiment can achieve real-time nonuniformity correction without changing the collection structure, acquisition rate and acquisition software of the existing camera.

  • 加载中
  • 图 1  CMOS读出结构

    Figure 1.  CMOS readout architecture

    图 2  固定图形噪声

    Figure 2.  Fixed pattern noise

    图 3  Andor Zyla sCMOS相机非线性示意图。

    Figure 3.  Nonlinear diagram of the Andor Zyla sCMOS camera.

    图 4  多点校正法示意图

    Figure 4.  Multipoint correction diagram

    图 5  两点校正法原理

    Figure 5.  Two point correction principle

    图 6  流程图

    Figure 6.  Flow chart

    图 7  各种方法的非均匀性曲线

    Figure 7.  Nonuniformity curves of various methods

    图 8  90 ms曝光时各方法校正结果。

    Figure 8.  Correction results of each method at 90 ms exposure.

    图 9  列均值曲线。x横坐标为列编号,y纵坐标为当前列的平均值。

    Figure 9.  Column average value curve. The x-coordinate is the column number, and the y-coordinate is the average of the current column.

    图 10  实时嵌入式处理单元结构图

    Figure 10.  Structure diagram of the real-time embedded processing unit

    图 11  嵌入式处理单元实物

    Figure 11.  Object of the embedded processing unit

  • [1]

    韩开亮, 何春芳. 基于两点法的红外图像非均匀性校正算法及其DSP实现[J]. 红外技术, 2007, 29(9): 541–544. doi: 10.3969/j.issn.1001-8891.2007.09.012

    Han K L, He C F. A nonuniformity correction algorithm for IRFPAs based on two points and it's realization by DSP[J]. Infrared Technol, 2007, 29(9): 541–544. doi: 10.3969/j.issn.1001-8891.2007.09.012

    [2]

    Xing S, Zhang J, Sun L, et al. Two-point nonuniformity correction based on LMS[C]//Infrared Components and Their Applications. International Society for Optics and Photonics, 2005, 5640: 130–136.

    [3]

    Wang H W, Ma C W, Cao J Z, et al. An adaptive two-point non-uniformity correction algorithm based on shutter and its implementation[C]//Proceedings of 2013 Fifth International Conference on Measuring Technology and Mechatronics Automation, 2013: 174–177.

    [4]

    李言旭, 孙德新, 刘银年. 基于多项式拟合的红外焦平面非均匀性校正[J]. 激光与红外, 2005, 35(2): 104–107. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW20050200B.htm

    Li Y X, Sun D X, Liu Y N. Polynomial fitting based on nonuniformity correction of infrared focal plane arrays[J]. Laser Infrared, 2005, 35(2): 104–107. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW20050200B.htm

    [5]

    黄英东, 安建波. 基于改进多项式拟合的红外焦平面非均匀性校正方法[J]. 红外, 2011, 32(3): 29–33. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201103009.htm

    Huang Y D, An J B. A nonuniformity correction algorithm for IRFPA based on improved polynomial fitting[J]. Infrared, 2011, 32(3): 29–33. https://www.cnki.com.cn/Article/CJFDTOTAL-HWAI201103009.htm

    [6]

    Gadallah F L, Csillag F, Smith E J M. Destriping multisensor imagery with moment matching[J]. Int J Remote Sens, 2000, 21(12): 2505–2511. doi: 10.1080/01431160050030592

    [7]

    钱润达, 赵东, 周慧鑫, 等. 基于加权引导滤波与时域高通滤波的非均匀性校正算法[J]. 红外与激光工程, 2018, 47(12): 1204001.

    Qian R D, Zhao D, Zhou H X, et al. Non-uniformity correction algorithm based on weighted guided filter and temporal high-pass filter[J]. Infrared Laser Eng, 2018, 47(12): 1204001.

    [8]

    Scribner D A, Sarkady K A, Caulfield J T, et al. Nonuniformity correction for staring IR focal plane arrays using scene-based techniques[J]. Proc SPIE, 1990, 1308: 224–233. http://spie.org/Publications/Proceedings/Paper/10.1117/12.21730

    [9]

    张爽, 周慧鑫, 牛肖雪, 等. 基于非局部均值滤波与时域高通滤波的非均匀性校正算法[J]. 光子学报, 2014, 43(1): 0110003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201401029.htm

    Zhang S, Zhou H X, Niu X X, et al. Temporal high-pass filter nonuniformity correction algorithm based on non-local means filter for infrared focal plane array[J]. Acta Photon Sin, 2014, 43(1): 0110003. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201401029.htm

    [10]

    李佳, 秦翰林, 延翔, 等. 时空域非线性滤波红外序列图像非均匀性校正[J]. 光子学报, 2015, 44(4): 0410001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201504017.htm

    Li J, Qin H L, Yan X, et al. Temporal-spatial nonlinear filter based non-uniformity correction method for IR image sequence[J]. Acta Photon Sin, 2015, 44(4): 0410001. https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201504017.htm

    [11]

    Münch B, Trtik P, Marone F, et al. Stripe and ring artifact removal with combined wavelet—Fourier filtering[J]. Opt Express, 2009, 17(10): 8567–8591. doi: 10.1364/OE.17.008567

    [12]

    Pande-Chhetri R, Abd-Elrahman A. De-striping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering[J]. ISPRS J Photogramm Remote Sens, 2011, 66(5): 620–636. doi: 10.1016/j.isprsjprs.2011.04.003

    [13]

    Feng Q L, Gong J H. Destriping remotely sensed data using anisotropic diffusion in wavelet domain[C]//Proceedings of 2014 4th IEEE International Conference on Information Science and Technology, 2014.

    [14]

    Vera E, Meza P, Torres S. Total variation approach for adaptive nonuniformity correction in focal-plane arrays[J]. Opt Lett, 2011, 36(2): 172–174. doi: 10.1364/OL.36.000172

    [15]

    Bouali M, Ladjal S. Toward optimal destriping of MODIS data using a unidirectional variational model[J]. IEEE Trans Geosci Remote Sens, 2011, 49(8): 2924–2935. doi: 10.1109/TGRS.2011.2119399

    [16]

    Zhou G, Fang H Z, Yan L X, et al. Removal of stripe noise with spatially adaptive unidirectional total variation[J]. Optik, 2014, 125(12): 2756–2762. doi: 10.1016/j.ijleo.2013.11.031

    [17]

    Liu H, Zhang Z L, Liu S Y, et al. Destriping algorithm with L0 sparsity prior for remote sensing images[C]//Proceedings of 2015 IEEE International Conference on Image Processing, 2015.

    [18]

    Celedón N, Redlich R, Figueroa M. FPGA-based neural network for nonuniformity correction on infrared focal plane arrays[C]//Proceedings of 2012 15th Euromicro Conference on Digital System Design, 2012: 193–200.

    [19]

    Vera E, Torres S. Fast adaptive nonuniformity correction for infrared focal-plane array detectors[J]. EURASIP J Adv Signal Process, 2005, 2005(13): 560759. doi: 10.1155/ASP.2005.1994

    [20]

    徐文文, 周建勇, 唐遵烈, 等. TDI-CCD多抽头图像合成及非均匀性校正[J]. 半导体光电, 2009, 30(1): 153–155. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG200901038.htm

    Xu W W, Zhou J Y, Tang Z L, et al. Synthesis and non-uniformity correction of TDI-CCD multi-tap's imaging[J]. Semicond Optoelectron, 2009, 30(1): 153–155. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG200901038.htm

    [21]

    吕雷, 张学峰. 基于FPGA的红外图像实时非均匀性校正[J]. 激光与红外, 2011, 41(6): 641–643. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201106008.htm

    Lü L, Zhang X F. Real-time infrared image nonuniformity correction base on FPGA[J]. Laser Infrared, 2011, 41(6): 641–643. https://www.cnki.com.cn/Article/CJFDTOTAL-JGHW201106008.htm

    [22]

    程旺, 吕群波, 赵娜. 基于FPGA的科学级CMOS图像传感器非均匀性校正[J]. 半导体光电, 2016, 37(6): 873–875, 889. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201606024.htm

    Cheng W, Lv Q B, Zhao N. Non-uniformity correction of scientific CMOS image sensor based on FPGA[J]. Semicond Optoelectron, 2016, 37(6): 873–875, 889. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201606024.htm

    [23]

    夏候耀涛, 王万平, 黄涛. 基于FPGA的CMOS图像实时非均匀性校正方法[J]. 电子设计工程, 2019, 27(1): 184–188. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201901036.htm

    Xiahou Y T, Wang W P, Huang T. The real-time non-uniformity correction method on multichannel CMOS images based on FPGA[J]. Electron Des Eng, 2019, 27(1): 184–188. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201901036.htm

  • 加载中

(11)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2021-01-26
修回日期:  2021-03-31
刊出日期:  2021-05-15

目录

/

返回文章
返回