基于石墨烯超表面的效率可调太赫兹聚焦透镜

王俊瑶,樊俊鹏,舒好,等. 基于石墨烯超表面的效率可调太赫兹聚焦透镜[J]. 光电工程,2021,48(4):200319. doi: 10.12086/oee.2021.200319
引用本文: 王俊瑶,樊俊鹏,舒好,等. 基于石墨烯超表面的效率可调太赫兹聚焦透镜[J]. 光电工程,2021,48(4):200319. doi: 10.12086/oee.2021.200319
Wang J Y, Fan J P, Shu H, et al. Efficiency-tunable terahertz focusing lens based on graphene metasurface[J]. Opto-Electron Eng, 2021, 48(4): 200319. doi: 10.12086/oee.2021.200319
Citation: Wang J Y, Fan J P, Shu H, et al. Efficiency-tunable terahertz focusing lens based on graphene metasurface[J]. Opto-Electron Eng, 2021, 48(4): 200319. doi: 10.12086/oee.2021.200319

基于石墨烯超表面的效率可调太赫兹聚焦透镜

  • 基金项目:
    湖北省教育厅科技研究计划重点项目(D20181107);武汉科技大学研究生创新基金项目(JCX201959);大学生创新基金项目资助课题(20ZA083)
详细信息
    作者简介:
    *通讯作者: 程用志(1984-), 男, 博士, 副教授, 主要从事电磁场与微波技术, 电磁超材料/超表面及其相关电子器件设计与应用。E-mail: chengyz@wust.edu.cn
  • 中图分类号: TH74;TQ127.11

Efficiency-tunable terahertz focusing lens based on graphene metasurface

  • Fund Project: Science and Technology Research Program of Hubei Education Department (D20181107), Wuhan University of Science and Technology Graduate Innovation Fund (JCX201959), and the University Student Innovation Fund (20ZA083)
More Information
  • 本文提出了一种基于石墨烯超表面的效率可调太赫兹聚焦透镜。该超表面单元结构由两层对称的圆形镂空石墨烯和中间介质层组成,其中镂空圆形中间由长方形石墨烯片连接。该结构可实现偏振转换,入射到超表面的圆偏振波将以其正交的形式出射,如左旋圆到右旋圆偏振转换。利用几何相位原理,通过旋转长方形条的方向,透射波会携带额外的附加相位并能满足2π范围内覆盖。合适地排列石墨烯超表面的单元结构,以实现太赫兹聚焦透镜。仿真结果表明:通过改变石墨烯的费米能级,可以对超表面圆偏振转换幅度进行调节,进而超透镜的聚焦效率也可以动态调节。因此,这种基于石墨烯超表面的效率可调聚焦透镜不用改变单元结构的尺寸,只需通过改变费米能级便可实现,可以广泛地应用到能量收集、成像等太赫兹应用领域。

  • Overview: An efficiency-adjustable terahertz (THz) focusing lens based on the graphene metasurface is proposed. The unit cell is composed of two symmetrical circular graphene hollows and an intermediate dielectric layer, wherein the middle of the hollow circular is connected by a rectangular graphene sheet. This structure can realize circular polarization conversion, for example, the left-handed circularly polarized wave incident on the metasurface will exude in the right-handed polarized form. According to the principle of geometric phase, the full 2π additional phase-shift of transmitted cross-polarized wave can be obtained by rotating the direction of the rectangular graphene. Thereby, a focusing lens with a good performance can be realized by arranging these unit cells properly. Because of the flexible and controllable optical characteristics, graphene has obvious advantages in the construction of dynamically tunable metasurfaces. By adjusting the voltage, the Fermi level of the graphene can be changed, and the conductivity can also be manipulated artificially. The numerical simulation was carried out based on the time-domain finite-element method. The simulation results show that the conversion amplitude of the circular polarization can be adjusted by changing the Fermi level of the graphene. When the Fermi level is 0.9 eV, the cross-polarization transmission coefficient of the proposed graphene metasurface reaches a maximum of 0.55 at 1.42 THz, and the transmission amplitude of the metasurface increases with the increase of the Fermi level at 1.42 THz. In addition, the resonance frequency of the circular polarization conversion based on the graphene metasurface shows a certain blue shift with the decrease of Fermi level. By arranging the unit cells of the metasurface properly, we can construct an efficiency-adjustable metalens. When the Fermi level is 0.9 eV, the simulate focal length of the proposed metalens is 2.03 mm, which is consistent well with the preset theoretical of 2 mm. However, when the graphene Fermi level is 0.1 eV, the cross-circularly polarized wave passing through the graphene metalens is almost 0, which means the incident THz wave cannot be converted into spherical wave. This adjustable graphene metasurface turns into an on-off focusing lens. Different from other traditional lens, such an efficiency-adjustable THz focusing lens based on graphene metasurface has many advantages, such as simple device structure, adjustable efficiency, reconfigurable, and it has potential application value in THz imaging, high-resolution terahertz displays, communications and so on.

  • 加载中
  • 图 1  (a) 电磁波束垂直入射超表面的聚焦示意图;(b) 超表面单元结构视图

    Figure 1.  (a) Focusing schematic diagram of the electromagnetic beam perpendicularly incident on the metasurface; (b) The schematic diagram of the unit cell

    图 2  弛豫时间τ =1 ps时不同EF下电导率的(a) 实部;(b) 虚部

    Figure 2.  The (a) real and (b) imaginary parts of the conductivity at different EF when the relaxation time τ is 1 ps

    图 3  在固定的旋转角θ=0°时不同EF下的透射幅度

    Figure 3.  The transmission amplitude at different Fermi levels at a fixed rotation angle θ=0°

    图 4  费米能级为0.9 eV时长方形旋转角度不同下的(a)透射幅度和(b)相位图

    Figure 4.  (a) The transmission amplitude and (b) the phase diagram at different rectangular rotation angles when Fermi level is 0.9 eV

    图 5  (a) 费米能级为0.1 eV;(b) 费米能级为0.9 eV入射光频率为1.4 THz下仿真得到的聚焦效果图

    Figure 5.  The simulation results of Fermi levels are (a) 0.1 eV and (b) 0.9 eV at the working frequency of 1.4 THz

    图 6  x-o-z平面中模拟EF=0.1 eV、0.9 eV。

    Figure 6.  The profile distributions of the intensity at EF=0.1 eV, 0.9 eV in the x-o-z plane, when the cross polarized light is along (a) x and (b) z axes

  • [1]

    Zheludev N I. The road ahead for metamaterials[J]. Science, 2010, 328(5978): 582–583. doi: 10.1126/science.1186756

    [2]

    Chen X Z, Huang L L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nat Commun, 2012, 3: 1198. doi: 10.1038/ncomms2207

    [3]

    Ni X J, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Sci Appl, 2013, 2(4): e72. doi: 10.1038/lsa.2013.28

    [4]

    Wang W, Guo Z Y, Li R Z, et al. Ultra-thin, planar, broadband, dual-polarity plasmonic metalens[J]. Photonics Res, 2015, 3(3): 68–71. doi: 10.1364/PRJ.3.000068

    [5]

    Zheng G X, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nat Nanotechnol, 2015, 10(4): 308–312. doi: 10.1038/nnano.2015.2

    [6]

    Pors A, Nielsen M G, Eriksen R L, et al. Broadband focusing flat mirrors based on plasmonic gradient metasurfaces[J]. Nano Lett, 2013, 13(2): 829–834. doi: 10.1021/nl304761m

    [7]

    Li R Z, Guo Z Y, Wang W, et al. Arbitrary focusing lens by holographic metasurface[J]. Photonics Res, 2015, 3(5): 252–255. doi: 10.1364/PRJ.3.000252

    [8]

    Khorasaninejad M, Chen W T, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190–1194. doi: 10.1126/science.aaf6644

    [9]

    Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nat Commun, 2013, 4(1): 2807. doi: 10.1038/ncomms3807

    [10]

    Huang L L, Chen X Z, Mühlenbernd H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nat Commun, 2014, 4: 2808. http://pubs.acs.org/servlet/linkout?suffix=ref26/cit26&dbid=16&doi=10.1021%2Facs.nanolett.6b01897&key=10.1038%2Fncomms3808

    [11]

    Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Sci Adv, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102

    [12]

    Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713

    [13]

    Ni X J, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686

    [14]

    Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304–1307. doi: 10.1126/science.1235399

    [15]

    Fan J P, Cheng Y Z. Broadband high-efficiency cross-polarization conversion and multi-functional wavefront manipulation based on chiral structure metasurface for terahertz wave[J]. J Phys D: Appl Phys, 2020, 53(2): 025109. doi: 10.1088/1361-6463/ab4d76

    [16]

    Cheng Y Z, Fan J P, Luo H, et al. Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial[J]. IEEE Access, 2019, 8: 7615–7621. http://ieeexplore.ieee.org/document/8943226/

    [17]

    Hao J M, Wang J, Liu X L, et al. High performance optical absorber based on a plasmonic metamaterial[J]. Appl Phys Lett, 2010, 96(25): 251104. doi: 10.1063/1.3442904

    [18]

    章强, 张晓渝, 邢园园, 等. 基于铁磁薄膜可调谐太赫兹微结构的研究[J]. 光电工程, 2020, 47(6): 190447. doi: 10.12086/oee.2020.190447

    Zhang Q, Zhang X Y, Xing Y Y, et al. Tunable terahertz structure based on the ferromagnetic film[J]. Opto-Electron Eng, 2020, 47(6): 190447. doi: 10.12086/oee.2020.190447

    [19]

    邓洪朗, 周绍林, 岑冠廷. 红外和太赫兹电磁吸收超表面研究进展[J]. 光电工程, 2019, 46(8): 180666. doi: 10.12086/oee.2019.180666

    Deng H L, Zhou S L, Cen G T. Progress on infrared and terahertz electro-magnetic absorptive metasurface[J]. Opto-Electron Eng, 2019, 46(8): 180666. doi: 10.12086/oee.2019.180666

    [20]

    张洪滔, 程用志, 黄木林. 基于石墨烯的宽带太赫兹可调超表面线偏振转换器[J]. 光电工程, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519

    Zhang H T, Cheng Y Z, Huang M L. Broadband terahertz tunable metasurface linear polarization converter based on graphene[J]. Opto-Electron Eng, 2019, 46(8): 180519. doi: 10.12086/oee.2019.180519

    [21]

    李雄, 马晓亮, 罗先刚. 超表面相位调控原理及应用[J]. 光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electron Eng, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001

    [22]

    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666–669. doi: 10.1126/science.1102896

    [23]

    Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 2011, 332(6035): 1291–1294. doi: 10.1126/science.1202691

    [24]

    Othman M A K, Guclu C, Capolino F. Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption[J]. Opt Express, 2013, 21(6): 7614–7632. doi: 10.1364/OE.21.007614

    [25]

    Ritter K A, Lyding J W. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons[J]. Nat Mater, 2009, 8(3): 235–242. doi: 10.1038/nmat2378

    [26]

    Castro E V, Novoselov K S, Morozov S V, et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect[J]. Phys Rev Lett, 2007, 99(21): 216802. doi: 10.1103/PhysRevLett.99.216802

    [27]

    Li Z B, Yao K, Xia F N, et al. Graphene plasmonic metasurfaces to steer infrared light[J]. Sci Rep, 2015, 5: 12423. doi: 10.1038/srep12423

    [28]

    Yatooshi T, Ishikawa A, Tsuruta K. Terahertz wavefront control by tunable metasurface made of graphene ribbons[J]. Appl Phys Lett, 2015, 107(5): 053105. doi: 10.1063/1.4927824

    [29]

    Cheng H, Chen S Q, Yu P, et al. Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces[J]. Adv Opt Mater, 2015, 3(12): 1744–1749. doi: 10.1002/adom.201500285

    [30]

    Liu W G, Hu B, Huang Z D, et al. Graphene-enabled electrically controlled terahertz meta-lens[J]. Photonics Res, 2018, 6(7): 703–708. doi: 10.1364/PRJ.6.000703

    [31]

    Cao G Y, Gan X S, Lin H, et al. An accurate design of graphene oxide ultrathin flat lens based on Rayleigh-Sommerfeld theory[J]. Opto-Electron Adv, 2018, 1(7): 180012. http://www.ixueshu.com/document/18debfaea2340c5d7015a3e39186712f318947a18e7f9386.html

    [32]

    Yang J, Wang Z, Wang F, et al. Atomically thin optical lenses and gratings[J]. Light: Sci Appl, 2016, 5(3): e16046. doi: 10.1038/lsa.2016.46

    [33]

    冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展[J]. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501

    Feng W, Zhang R, Cao J C. Progress of terahertz devices based on graphene[J]. Acta Phys Sin, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501

    [34]

    Cai T, Wang G M, Xu H X, et al. Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections[J]. Ann Phys, 2017, 530(1): 1700321. http://onlinelibrary.wiley.com/doi/10.1002/andp.201700321

    [35]

    Shi X, Han D Z, Dai Y Y, et al. Plasmonic analog of electromagnetically induced transparency in nanostructure graphene[J]. Opt Express, 2013, 21(23): 28438–28443. doi: 10.1364/OE.21.028438

    [36]

    Cheng H, Chen S Q, Yu P, et al. Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips[J]. Appl Phys Lett, 2013, 103(20): 203112. doi: 10.1063/1.4831776

    [37]

    Fallahi A, Perruisseau-Carrier J. Manipulation of giant Faraday rotation in graphene metasurfaces[J]. Appl Phys Lett, 2012, 101(23): 231605. doi: 10.1063/1.4769095

    [38]

    Ding J, Arigong B, Ren H, et al. Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows[J]. Sci Rep, 2014, 4: 6128. http://pubmedcentralcanada.ca/pmcc/articles/PMC4141255/

    [39]

    Cheng J R, Fan F, Chang S J. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 2019, 9(3): 398. doi: 10.3390/nano9030398

  • 加载中

(6)

计量
  • 文章访问数:  8003
  • PDF下载数:  2046
  • 施引文献:  0
出版历程
收稿日期:  2020-08-27
修回日期:  2020-10-26
刊出日期:  2021-04-15

目录

/

返回文章
返回