-
摘要:
光子自旋—轨道相互作用是经典光学所忽略的重要现象,近年来研究发现该现象可通过人工亚波长结构显著增强并进行按需调控。传统超构表面仅支持对称光子自旋—轨道相互作用,存在共轭对称性限制,难以将不同自旋态用于多功能集成、复杂光场调控、信息加密及存储等领域。非对称光子自旋—轨道相互作用能够使左右旋圆偏振光解耦,为突破上述理论和应用限制带来新契机。本文首先介绍了非对称光子自旋—轨道相互作用的原理及实现方法,其次介绍非对称光子自旋—轨道相互作用的代表性应用以及特点,最后对非对称光子自旋—轨道相互作用研究面临的挑战和未来的研究方向进行展望。
-
关键词:
- 超构表面 /
- 光子自旋—轨道相互作用 /
- 轨道角动量 /
- 光学悬链线
Abstract:Photonic spin-orbit interaction is an important phenomenon ignored by classical optics. In recent years, studies have found that this phenomenon can be significantly enhanced by artificial subwavelength structures and adjusted on demand. Traditional metasurfaces only support symmetric photon spin-orbit interactions, and there are limitations in conjugate symmetry, which makes it difficult to use different spin states for multifunctional integration, complex optical field regulation, information encryption, and storage. The asymmetric photon spin-orbit interaction can decouple left and right circularly polarized light, which brings new opportunities for breaking the above-mentioned theoretical and application limitations. This article first introduces the principle and realization method of asymmetric photon spin-orbit interactions, secondly introduces the representative applications and characteristics of asymmetric photon-spin-orbit interactions, and finally outlines the challenges and prospects of asymmetric photon spin-orbit interactions for future research directions.
-
Overview: It is well known that photons carry not only polarization-dependent spin angular momentum but also space-dependent orbit angular momentum. Photonic spin-orbit interaction, which describes the coupling between spin and orbital angular momenta during the propagation of light, is an important phenomenon ignored by classical optics. In recent years, it has been found that this phenomenon can be significantly enhanced by artificial subwavelength structures and adjusted on demand. Traditional metasurfaces only support symmetric photon spin-orbit interactions, and there are limitations in conjugate symmetry, which makes it difficult to use different spin states for multifunctional integration, complex optical field regulation, information encryption, and storage. For example, orbit angular momentum beams generated by traditional metasurfaces mentioned above are always in pairs with opposite topological charges, and holographic images for two opposite spins are usually central symmetric. This conjugate symmetry causes fundamental limitations in energy efficiency and information fidelity for spin-selective multifunctional devices. The asymmetric photon spin-orbit interaction can decouple left and right circularly polarized light, which brings new opportunities for breaking the above-mentioned theoretical and application limitations. This review first introduces the principle and realization method of asymmetric photon spin-orbit interactions. Then, some representative applications and characteristics of asymmetric photon-spin-orbit interactions are introduced. For example, the first monolayer all-dielectric metasurface, simultaneously exhibiting the wavefront manipulation ability and giant circular asymmetric transmission more than four times greater than the previously reported monolayer metasurfaces, was experimentally demonstrated by asymmetric photon spin-orbit interactions. Furthermore, a monolithic metasurface spatial differentiator without 4-F systems was also experimentally demonstrated based on asymmetric photonic spin-orbit interactions, enabling edge detection systems with higher integration level and compactness. Finally, the challenges and prospects for future research directions of asymmetric photon spin-orbit interactions are outlined.
-
图 1 实现非对称PSOI的单元结构设计[31]。(a)~(e)超构表面及单元结构示意图;(f)针对工作长532 nm单元结构仿真结果,纳米柱材料为二氧化钛(TiO2),基底材料为二氧化硅(SiO2);(g)针对工作波长10.6 μm单元结构仿真结果,纳米柱材料为硅(Si),基底材料为氟化钡(BaF2)
Figure 1. Unit element design for achieving asymmetric PSOI[31]. (a)~(e) Schematic diagrams of metasurfaces and unit elements; (f) Simulated results of unit elements at the wavelength of 532 nm. The materials of nanofins and substrate are titanium dioxide (TiO2) and quartz (SiO2), respectively; (g) Simulated results of unit elements at the wavelength of 10.6 μm. The materials of nanofins and substrate are silicon (Si) and barium fluoride (BaF2), respectively
图 3 非对称PSOI实现圆偏振不对称传输和波前调控[32]。(a)超构表面电镜图;(b)测试不对称参数和消光比;(c)圆偏振不对称传输超构表面波前调控效果示意图
Figure 3. Simultaneous circular asymmetric transmission and wavefront manipulation enabled by asymmetric PSOI[32]. (a) Scanning electron microscope image of the metasurface; (b) Measured asymmetric parameter and extinction ratio; (c) Schematic diagram of wavelength manipulation by the metasurface with circular asymmetric transmission effect
图 4 非对称PSOI实现全光边缘探测[54]。(a)单层超构表面将LCPL和RCPL分量对应的图像沿x方向分离;(b)一个线偏振片被用于滤除LCPL和RCPL图像重叠部分实现边缘探测
Figure 4. Optical edge detection enabled by asymmetric PSOI[54]. (a) The monolithic metasurface for LCPL and RCPL imaging with opposite shift along the x-axis; (b) A linear polarizer is applied to eliminate the overlapped region of LCPL and RCPL images for edge detection
图 5 多态可切换PSOI用于全息加密[64]。(a)和(e)两个全息超构表面样品的电镜图;(b)~(d)和(f)~(h)分别为GST处于不同状态时,两个器件在RCPL(上)和LCPL(下)入射下产生的衍射图案
Figure 5. Holographic encryption enabled by multistate switchable PSOI[64]. (a), (e) Scanning electron microscope images of two metasurfaces; (b)~(d) and (f)~(h) Diffraction patterns generated by two devices at different states of GST under the illumination of RCPL (top) and LCPL (bottom)
-
[1] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905
[2] Anandan J. The geometric phase[J]. Nature, 1992, 360(6402): 307–313. doi: 10.1038/360307a0
[3] Chyba T H, Wang L J, Mandel L, et al. Measurement of the Pancharatnam phase for a light beam[J]. Optics Letters, 1988, 13(7): 562–564. doi: 10.1364/OL.13.000562
[4] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 392(1802): 45–57.
[5] Biener G, Niv A, Kleiner V, et al. Formation of helical beams by use of Pancharatnam-Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875–1877. doi: 10.1364/OL.27.001875
[6] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141–1143. doi: 10.1364/OL.27.001141
[7] Luo X G, Pu M B, Li X, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6(6): e16276.
[8] Guo Y H, Pu M B, Zhao Z Y, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022–2029. doi: 10.1021/acsphotonics.6b00564
[9] Tang D L, Wang C T, Zhao Z Y, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713–719. http://dx.doi.org/10.1002/lpor.201500182
[10] Li Z, Zhang T, Wang Y Q, et al. Achromatic broadband super-resolution imaging by super-oscillatory metasurface[J]. Laser & Photonics Reviews, 2018, 12(10): 1800064. http://www.onacademic.com/detail/journal_1000040406276110_fad7.html
[11] Li X, Chen L W, Li Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102
[12] Pu M B, Li X, Guo Y H, et al. Nanoapertures with ordered rotations: symmetry transformation and wide-angle flat lensing[J]. Optics Express, 2017, 25(25): 31471–31477. doi: 10.1364/OE.25.031471
[13] Pu M B, Li X, Ma X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396
[14] Luo X G, Pu M B, Guo Y H, et al. Catenary functions meet electromagnetic waves: opportunities and promises[J]. Advanced Optical Materials, 2020, doi: 10.1002/adom.202001194.
[15] Luo X G. Engineering Optics 2.0: A Revolution in Optical Theories, Materials, Devices and Systems[M]. Singapore: Springer, 2019.
[16] Li X, Pu M B, Zhao Z Y, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524
[17] Wang Y Q, Pu M B, Zhang Z J, et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]. Scientific Reports, 2016, 5: 17733. doi: 10.1038/srep17733
[18] Guo Y H, Yan L S, Pan W, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154. doi: 10.1038/srep30154
[19] Guo Y H, Huang Y J, Li X, et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Advanced Optical Materials, 2019, 7(18): 1900503. doi: 10.1002/adom.201900503
[20] Zhang F, Zeng Q Y, Pu M B, et al. Broadband and high-efficiency accelerating beam generation by dielectric catenary metasurfaces[J]. Nanophotonics, 2020, 9(9): 2829–2837. doi: 10.1515/nanoph-2020-0057
[21] Liu K P, Guo Y H, Pu M B, et al. Wide field-of-view and broadband terahertz beam steering based on gap Plasmon geodesic antennas[J]. Scientific Reports, 2017, 7: 41642. doi: 10.1038/srep41642
[22] Tan X H. Anomalous scattering-induced circular dichroism in continuously shaped metasurface[J]. Opto-Electronic Engineering, 2017, 44(1): 87–91. http://www.cnki.com.cn/Article/CJFDTotal-GDGC201701010.htm
[23] Wang D P, Hwang Y, Dai Y M, et al. Broadband high-efficiency chiral splitters and holograms from dielectric nanoarc metasurfaces[J]. Small, 2019, 15(20): 1900483. doi: 10.1002/smll.201900483
[24] Shi Z J, Zhu A Y, Li Z Y, et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion[J]. Science Advances, 2020, 6(23): eaba3367. doi: 10.1126/sciadv.aba3367
[25] Sell D, Yang J J, Doshay S, et al. Large-angle, multifunctional metagratings based on freeform multimode geometries[J]. Nano Letters, 2017, 17(6): 3752–3757. doi: 10.1021/acs.nanolett.7b01082
[26] 代成伟, 闫超, 曾庆玉, 等.一种新型贝塞尔光束器件的设计方法[J].光电工程, 2020, 47(6): 190190. doi: 10.12086/oee.2020.190190
Dai C W, Yan C, Zeng Q Y, et al. A method of designing new Bessel beam generator[J]. Opto-Electronic Engineering, 2020, 47(6): 190190. doi: 10.12086/oee.2020.190190
[27] Li Y F, Ma H, Wang J F, et al. High-efficiency tri-band quasi-continuous phase gradient metamaterials based on spoof surface plasmon polaritons[J]. Scientific Reports, 2017, 7: 40727. doi: 10.1038/srep40727
[28] Luo X G. Catenary Optics[M]. Singapore: Springer, 2019.
[29] Zhang X H, Li X, Jin J J, et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes[J]. Nanoscale, 2018, 10(19): 9304–9310. doi: 10.1039/C7NR08428E
[30] Khorasaninejad M, Chen W T, Zhu A Y, et al. Multispectral Chiral Imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595–4600. doi: 10.1021/acs.nanolett.6b01897
[31] Zhang F, Pu M B, Luo J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 319–325.
[32] Zhang F, Pu M B, Li X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions[J]. Advanced Functional Materials, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295
[33] 李雄, 马晓亮, 罗先刚.超表面相位调控原理及应用[J].光电工程, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001
Li X, Ma X L, Luo X G. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255–275. doi: 10.3969/j.issn.1003-501X.2017.03.001
[34] Deng Z L, Deng J H, Zhuang X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5): 2885–2892. doi: 10.1021/acs.nanolett.8b00047
[35] Deng Z L, Jin M K, Ye X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 2020, 30(21): 1910610. doi: 10.1002/adfm.201910610
[36] Balthasar Mueller J P, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
[37] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896–901. doi: 10.1126/science.aao5392
[38] Wu L, Tao J, Zheng G X. Controlling phase of arbitrary polarizations using both the geometric phase and the propagation phase[J]. Physical Review B, 2018, 97(24): 245426. doi: 10.1103/PhysRevB.97.245426
[39] Li Z L, Chen C, Guan Z Q, et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach[J]. Laser & Photonics Reviews, 2020, 14(6): 2000032. http://onlinelibrary.wiley.com/doi/full/10.1002/lpor.202000032
[40] Wang B, Dong F L, Feng H, et al. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1660–1664. doi: 10.1021/acsphotonics.7b01191
[41] Huo P C, Zhang C, Zhu W Q, et al. photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Letters, 2020, 20(4): 2791–2798. doi: 10.1021/acs.nanolett.0c00471
[42] Fan Q B, Zhu W Q, Liang Y Z, et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible[J]. Nano Letters, 2019, 19(2): 1158–1165. doi: 10.1021/acs.nanolett.8b04571
[43] Zhang C, Divitt S, Fan Q B, et al. Low-loss metasurface optics down to the deep ultraviolet region[J]. Light: Science & Applications, 2020, 9: 55. http://www.nature.com/articles/s41377-020-0287-y
[44] Li S Q, Li X Y, Wang G X, et al. Multidimensional manipulation of photonic spin hall effect with a single-layer dielectric metasurface[J]. Advanced Optical Materials, 2019, 7(5): 1801365. doi: 10.1002/adom.201801365
[45] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937–943. doi: 10.1038/nnano.2015.186
[46] Zhou H Q, Sain B, Wang Y T, et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 2020, 14(5): 5553–5559. doi: 10.1021/acsnano.9b09814
[47] Zhao R Z, Sain B, Wei Q S, et al. Multichannel vectorial holographic display and encryption[J]. Light: Science & Applications, 2018, 7: 95. http://www.onacademic.com/detail/journal_1000041601250199_8611.html
[48] Zhang K, Yuan Y Y, Ding X M, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28423–28430. https://pubmed.ncbi.nlm.nih.gov/31296005/
[49] Yuan Y Y, Sun S, Chen Y, et al. A fully phase-modulated metasurface as an energy-controllable circular polarization router[J]. Advanced Science, 2020, 7(18): 2001437. doi: 10.1002/advs.202001437
[50] Yuan Y Y, Zhang K, Ratni B, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 2020, 11(1): 4186. doi: 10.1038/s41467-020-17773-6
[51] 陈俊妍, 张飞, 张明, 等.基于介质超表面的径向偏振贝塞尔透镜[J].光电工程, 2018, 45(11): 180124. doi: 10.12086/oee.2018.180124
Chen J Y, Zhang F, Zhang M, et al. Radially polarized Bessel lens based on all-dielectric metasurface[J]. Opto-Electronic Engineering, 2018, 45(11): 180124. doi: 10.12086/oee.2018.180124
[52] Xu Y H, Li Q, Zhang X Q, et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation[J]. ACS Photonics, 2019, 6(11): 2933–2941. doi: 10.1021/acsphotonics.9b01047
[53] Gao Y J, Xiong X, Wang Z H, et al. Simultaneous generation of arbitrary assembly of polarization states with geometrical-scaling-induced phase modulation[J]. Physical Review X, 2020, 10(3): 031035. doi: 10.1103/PhysRevX.10.031035
[54] He Q, Zhang F, Pu M B, et al. Monolithic metasurface spatial differentiator enabled by asymmetric photonic spin-orbit interactions[J]. Nanophotonics, 2020, doi: 10.1515/nanoph-2020-0366.
[55] Zhou J X, Qian H L, Chen C F, et al. Optical edge detection based on high-efficiency dielectric metasurface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140. doi: 10.1073/pnas.1820636116
[56] De Galarreta C R, Alexeev A M, Au Y Y, et al. Nonvolatile reconfigurable phase-change metadevices for beam steering in the near infrared[J]. Advanced Functional Materials, 2018, 28(10): 1704993. doi: 10.1002/adfm.201704993
[57] Chu C H, Tseng M L, Chen J, et al. Active dielectric metasurface based on phase-change medium[J]. Laser & Photonics Reviews, 2016, 10(6): 986–994. http://onlinelibrary.wiley.com/doi/10.1002/lpor.201600106/abstract
[58] Chen Y G, Li X, Sonnefraud Y, et al. Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5: 8660. doi: 10.1038/srep08660
[59] Choi C, Lee S Y, Mun S E, et al. Metasurface with nanostructured Ge2Sb2Te5 as a platform for broadband-operating wavefront switch[J]. Advanced Optical Materials, 2019, 7(12): 1900171. doi: 10.1002/adom.201900171
[60] Li J X, Kamin S, Zheng G X, et al. Addressable metasurfaces for dynamic holography and optical information encryption[J]. Science Advances, 2018, 4(6): eaar6768. doi: 10.1126/sciadv.aar6768
[61] Yin X H, Steinle T, Huang L L, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17016.
[62] Zhang M, Pu M B, Zhang F, et al. Plasmonic metasurfaces for switchable photonic spin–orbit interactions based on phase change materials[J]. Advanced Science, 2018, 5(10): 1800835. doi: 10.1002/advs.201800835
[63] Nemati A, Wang Q, Hong M H, et al. Tunable and reconfigurable metasurfaces and metadevices[J]. Opto-Electronic Advances, 2018, 1(5): 180009. http://www.opticsjournal.net/Articles/abstract?aid=OJ180919000003gMiPlS
[64] Zhang F, Xie X, Pu M B, et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices[J]. Advanced Materials, 2020, 32(39): 1908194. doi: 10.1002/adma.201908194