环路剪切干涉术测量附面层密度场

蒲泓宇,李大海,罗鹏,等. 环路剪切干涉术测量附面层密度场[J]. 光电工程,2020,47(4):190390. doi: 10.12086/oee.2020.190390
引用本文: 蒲泓宇,李大海,罗鹏,等. 环路剪切干涉术测量附面层密度场[J]. 光电工程,2020,47(4):190390. doi: 10.12086/oee.2020.190390
Pu H Y, Li D H, Luo P, et al. Measurement of flow density field by cyclic radial shearing interferometer[J]. Opto-Electron Eng, 2020, 47(4): 190390. doi: 10.12086/oee.2020.190390
Citation: Pu H Y, Li D H, Luo P, et al. Measurement of flow density field by cyclic radial shearing interferometer[J]. Opto-Electron Eng, 2020, 47(4): 190390. doi: 10.12086/oee.2020.190390

环路剪切干涉术测量附面层密度场

  • 基金项目:
    国家自然科学基金资助项目(11732016,11402286)
详细信息
    作者简介:
    *通讯作者: 李大海(1968-),男,教授,博士生导师,主要从事光学信息处理、波前传感、三维立体显示等方面的研究。E-mail:lidahai@scu.edu.cn
  • 中图分类号: TN247; TB82

Measurement of flow density field by cyclic radial shearing interferometer

  • Fund Project: Supported by National Natural Science Foundation of China (11732016, 11402286)
More Information
  • 在附面层测量中,需对微小尺度的高速气流变化场进行瞬态测量。数字化的干涉测量方法能定量地解算出流场的密度场,是一种重要的应用。介绍了一种共路干涉的环路剪切干涉方法,对震动不敏感,无需参考面,适合附面层测量使用。采用基于空间位相调制的快速算法,配以脉冲激光器和同步控制系统,可实时地对扰流密度场进行定量测量。该系统采集分辨率200 pixels × 200 pixels,采集频率可达每秒1000帧以上。系统的波前重构方法经过计算机仿真,检测结果优于1/20λ。在0.6 m风洞对圆柱体尾部附面层进行测量试验,结果表明,在一定风速下,该系统能抑制振动干扰,显著地区分出圆柱体尾部扰流信号和振动噪声,具有良好的应用前景。

  • Overview: "Boundary layer" refers to a thin flow layer with a non-negligible viscous force close to the aircraft surface. Its thickness is only a few millimeters of the model surface in the wind tunnel test. It shows typical characteristics of small scale random disturbance, small size and fast change.

    The current methods of boundary layer flow display include particle tracer method, oil flow display method and optical measurement method, but they all have their own shortcomings. Particle tracer method is to add smoke generator into the air and show the flow track by observing the density of smoke particles in the flow field. As the size of the smoke particles is much larger than that of the gas molecules, this method will change the composition of the gas. Oil flow display technology is the reaction of the flowing air in the boundary layer to the friction stress on the wall surface. The optical measurement method has no contact and can directly reflect the integral of density difference along the optical path, but the schlieren and shadow methods can only display and cannot calculate the density field quantitatively.

    Based on phase difference, the density field of flow field can be calculated quantitatively. However, the traditional interferometry method based on time phase modulation cannot detect a transient change field the interference image is easily interfered due to the influence of vibration generated by high-speed airflow, which is difficult to solve, so it cannot be applied in the boundary layer measurement.

    This paper proposed a measurement system based on loop radial shear interference, with high wavefront detection accuracy, good anti-noise and anti-interference performance, and suitable for use in boundary layer measurement. The system adopts the fast transform method based on spatial phase modulation, which loads the information of shear wave surface onto the carrier, and an image can quickly recover the wavefront by using the fast Fourier transform method, avoiding the influence of dynamic changes of measured wavefront and realizing real-time dynamic detection. For the complex wavefront of the boundary layer, the iterative method is used to improve the wavefront reconstruction accuracy. The simulation results show that the residual root mean square (RMS) value is better than 1/20λ. This paper introduces the realization of hardware system and software process in detail. The principle of the algorithm is also presented. The experimental results in a 0.6 m wind tunnel show that the system can restrain the vibration interference and distinguish the disturbance signal and the vibration noise remarkably. The proposed method has broad application prospects in real-time boundary layer measuring.

  • 加载中
  • 图 1  剪切层气动光学效应测量原理图

    Figure 1.  Principle diagram of aero-optical effect measurement in shear layer

    图 2  环路径向剪切干涉测量风洞流场原理

    Figure 2.  Principle diagram of cyclic radial shearing interferometry

    图 3  同步采集系统控制图

    Figure 3.  Control chart of synchronized acquisition system

    图 4  数据处理流程图

    Figure 4.  Data processing flow chart

    图 5  第一类波前仿真。(a)原始波前;(b)扩大波前;(c)相位差波前;(d)重建波前;(e)残差

    Figure 5.  Simulation analysis of the first type wavefront. (a) Original wavefront; (b) Extended wavefront; (c) Wavefront of phase difference; (d) Reconstructed wavefront; (e) Residual

    图 6  第二类波前仿真。(a)原始波前;(b)扩大波前;(c)相位差波前;(d)重建波前;(e)残差

    Figure 6.  Simulation analysis of the second type wavefront. (a) Original wavefront; (b) Extended wavefront; (c) Wavefront of phase difference; (d) Reconstructed wavefront; (e) Residual

    图 7  测量区域

    Figure 7.  Measured area

    图 8  有模型扰流时密度图(单位:kg/m3)。(a) 1.2 s;(b) 3.6 s;(c) 4.5 s;(d) 6.3 s;(e) 7.8 s

    Figure 8.  Density diagram with model disturbance. (a) 1.2 s; (b) 3.6 s; (c) 4.5 s; (d) 6.3 s; (e) 7.8 s

    图 9  空风洞时密度图(单位:kg/m3). (a) 1.3 s;(b) 3.4 s;(c) 4.7 s;(d) 6.9 s;(e) 7.7 s

    Figure 9.  Time density map of an empty wind tunnel. (a) 1.3 s; (b) 3.4 s; (c) 4.7 s; (d) 6.9 s; (e) 7.7 s

    表 1  多幅图像相位RMS比值对比

    Table 1.  Comparison of phase RMS ratios of multiple images

    马赫数 信噪比
    0.4 3.68
    0.5 2.72
    0.6 2.13
    0.7 1.79
    0.8 1.43
    0.9 1.25
    1.0 1.09
    下载: 导出CSV
  • [1]

    俞建阳. DBD等离子体诱导涡结构控制附面层流动研究[D].哈尔滨: 哈尔滨工业大学, 2017.

    Yu J Y. Flow control with the vortex induced by DBD plasma in boundary layer flow[D]. Harbin: Harbin University of Technology, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10213-1017862304.htm

    [2]

    李强, 江涛, 陈苏宇, 等.激波风洞边界层转捩测量技术及应用[J].航空学报, 2019, 40(8): 122740. http://d.old.wanfangdata.com.cn/Periodical/hkxb201908005

    Li Q, Jiang T, Chen S Y, et al. Measurement technique and application of boundary layer transition in shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(8): 122740. http://d.old.wanfangdata.com.cn/Periodical/hkxb201908005

    [3]

    卢晓芬, 张天序, 洪汉玉.气动光学效应像素偏移图像校正方法研究[J].红外与激光工程, 2007, 36(5): 758-761. doi: 10.3969/j.issn.1007-2276.2007.05.045

    Lu X F, Zhang T X, Hong H Y. Image correction method with pixel deviation caused by aero-optics effects[J]. Infrared and Laser Engineering, 2007, 36(5): 758-761. doi: 10.3969/j.issn.1007-2276.2007.05.045

    [4]

    杨富荣, 陈力, 闫博, 等.干涉瑞利散射测速技术在跨超声速风洞的湍流度测试应用研究[J].实验流体力学, 2018, 32(3): 82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ltlxsyycl201803010

    Yang F R, Chen L, Yan B, et al. Measurement of turbulence velocity fluctuations in transonic wind tunnel using Interferometric Rayleigh Scattering diagnostic technique[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 82-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ltlxsyycl201803010

    [5]

    Ling T, Liu D, Yang Y Y, et al. Off-axis cyclic radial shearing interferometer for measurement of centrally blocked transient wavefront[J]. Optics Letters, 2013, 38(14): 2493-2495. doi: 10.1364/OL.38.002493

    [6]

    罗积军, 侯素霞, 徐军, 等.环路径向剪切干涉测量激光束波前畸变的研究[C]//第九届全国光电技术学术交流会论文集.北京: 中国宇航学会, 中国航空学会, 中国兵工学会, 中国光学学会, 中国电子学会, 2010.

    Luo J J, Hou S X, Xu J, et al. Study of measuring laser beam wave-front based on cyclic radial shearing interferometer[C]//Proceedings of National Symposium on Optoelectronic Technology. Beijing: Chinese Society of Astronautics, Chinese Society of Aeronautics and Astronautics, China Ordnance Society, Chinese Optical Society, Chinese Institute of Electronics, 2010.

    [7]

    Couch L L, Kalin D A, McNeal T. Experimental investigation of image degradation created by a high-velocity flow field[J]. Proceedings of SPIE, 1991, 1486: 417-423. doi: 10.1117/12.45784

    [8]

    Griffin D W. Phase-shifting shearing interferometer[J]. Optics Letters, 2001, 26(3): 140-141. http://d.old.wanfangdata.com.cn/Periodical/dzclyyqxb201311015

    [9]

    Lam B, Guo C L. Complete characterization of ultrashort optical pulses with a phase-shifting wedged reversal shearing interferometer[J]. Light: Science & Applications, 2018, 7: 30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gkxyyy-e201804033

    [10]

    杨甬英, 刘东, 王道档, 等.动态变化场的高速高精度实时干涉检测[J].红外与激光工程, 2008, 37(5): 757-760. doi: 10.3969/j.issn.1007-2276.2008.05.002

    Yang Y Y, Liu D, Wang D D, et al. Real-time interferometry with high speed and precision for transient flow field and its applications[J]. Infrared and Laser Engineering, 2008, 37(5): 757-760. doi: 10.3969/j.issn.1007-2276.2008.05.002

    [11]

    凌曈.基于多波前剪切干涉与光学层析技术三维折射率场重构研究[D].杭州: 浙江大学, 2016.

    Ling T. Reconstruction of three-dimensional refractive index field based on multi-wave shearing interferometry and optical tomography[D]. Hangzhou: Zhejiang University, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10335-1016325741.htm

    [12]

    Gu L Y, Liu L, Hu S Y, et al. Polarization phase-shifting lateral shearing interferometer with two polarization beam splitter plates[J]. Optical Review, 2017, 24(4): 600-604. doi: 10.1007/s10043-017-0351-x

    [13]

    Medhi B, Hegde G M, Gorthi S S. Improved quantitative visualization of hypervelocity flow through wavefront estimation based on shadow casting of sinusoidal gratings[J]. Applied Optics, 2016, 55(22): 6060-6071. doi: 10.1364/AO.55.006060

    [14]

    章辰.偏振相移径向剪切干涉仪及流场动态测量研究[D].成都: 四川大学, 2018.

    Zhang C. A study of polarization phase shifting radial shearing interferometry and dynamic measurement in flow field[D]. Chengdu: Sichuan University, 2018.

    [15]

    Thornton D E, Spencer M F, Perram G P. Deep-turbulence wavefront sensing using digital holography in the on-axis phase shifting recording geometry with comparisons to the self-referencing interferometer[J]. Applied Optics, 2019, 58(5): A179-A189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=13b9705be826f529d272ad8dc2694d5f

    [16]

    Tian C, Chen X F, Liu S C. Modal wavefront reconstruction in radial shearing interferometry with general aperture shapes[J]. Optics Express, 2016, 24(4): 3572-3583. doi: 10.1364/OE.24.003572

    [17]

    Zhang C, Li D H, Li M M, et al. Wavefront reconstruction algorithm based on interpolation coefficients for radial shearing interferometry[J]. Proceedings of SPIE, 2016, 10155: 1015539. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HYCIC201612050000001474

    [18]

    Wang Z Y, Wang S, Yang P, et al. Multiple-wave radial shearing interferometer based on a Fresnel zone plate[J]. Optics Express, 2018, 26(26): 34928-34939. doi: 10.1364/OE.26.034928

    [19]

    Padghan P P, Alti K M. Quantification of nanoscale deformations using electronic speckle pattern interferometer[J]. Optics & Laser Technology, 2018, 107: 72-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=932e58771d1c196b341d92fb7a302e39

    [20]

    Dai F Z, Zheng Y Z, Bu Y, et al. Modal wavefront reconstruction based on Zernike polynomials for lateral shearing interferometry[J]. Applied Optics, 2017, 56(1): 61-68.

    [21]

    Sessa V, Xie Z T, Herring S. Turbulence and dispersion below and above the interface of the internal and the external boundary layers[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 182: 189-201. doi: 10.1016/j.jweia.2018.09.021

  • 加载中

(9)

(1)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2019-07-08
修回日期:  2019-11-04
刊出日期:  2020-04-01

目录

/

返回文章
返回