基于R-FCN框架的多候选关联在线多目标跟踪

鄂贵,王永雄. 基于R-FCN框架的多候选关联在线多目标跟踪[J]. 光电工程,2020,47(1):190136. doi: 10.12086/oee.2020.190136
引用本文: 鄂贵,王永雄. 基于R-FCN框架的多候选关联在线多目标跟踪[J]. 光电工程,2020,47(1):190136. doi: 10.12086/oee.2020.190136
E G, Wang Y X. Multi-candidate association online multi-target tracking based on R-FCN framework[J]. Opto-Electron Eng, 2020, 47(1): 190136. doi: 10.12086/oee.2020.190136
Citation: E G, Wang Y X. Multi-candidate association online multi-target tracking based on R-FCN framework[J]. Opto-Electron Eng, 2020, 47(1): 190136. doi: 10.12086/oee.2020.190136

基于R-FCN框架的多候选关联在线多目标跟踪

  • 基金项目:
    国家自然科学基金资助项目(61673276,61703277)
详细信息
    作者简介:
    *通讯作者: 王永雄(1970-),男,博士,教授,主要从事智能机器人及视觉的研究。E-mail: wyxiong@usst.edu.cn
  • 中图分类号: TP391

Multi-candidate association online multi-target tracking based on R-FCN framework

  • Fund Project: Supported by National Natural Science Foundation of China (61673276, 61703277)
More Information
  • 在线多目标跟踪是实时视频序列分析的重要前提。针对在线多目标跟踪中目标检测可靠性低、跟踪丢失较多、轨迹不平滑等问题,提出了基于R-FCN网络框架的多候选关联的在线多目标跟踪模型。首先,通过基于R-FCN网络从KF预测结果和检测结果中获取更可靠的候选框,然后利用Siamese网络进行基于外观特征的相似性度量,实现候选与轨迹之间的数据关联,最后通过RANSAC算法优化跟踪轨迹。在人流密集和目标被部分遮挡的复杂场景中,提出的算法具有较高的目标识别和跟踪能力,大幅减少漏检和误检现象,跟踪轨迹更加连续平滑。实验结果表明,在同等条件下,与当前已有的方法对比,本文提出在目标跟踪准确度(MOTA)、丢失轨迹数(ML)和误报次数(FN)等多个性能指标均有较大提升。

  • Overview: As the application basis of human behavior recognition, semantic segmentation and unmanned driving, multi-target tracking is one of the research hotspots in the field of computer vision. In complex tracking scenarios, in order to track multiple targets stably and accurately, many difficulties in tracking need to be considered, such as camera motion, interaction between targets, missed detection and error detection. In recent years, with the rapid development of deep learning, many excellent multi-target tracking algorithms based on detection framework have emerged, which are mainly divided into online multi-target tracking method and offline multi-target tracking method. The multi-target tracking framework process on the basis of detection is as following: the target is detected by the off-line trained target detector, and then the similarity matching method is applied to correlate the detection target. Ultimately, the generated trajectory is continuously used to match the detection result to generate more reliable trajectory. Among them, online multi-target tracking methods mainly include Sort, Deep-sort, SDMT, etc., while offline multi-target tracking methods mainly include network flow model, conditional random field model and generalized association graph model. The offline multi-target tracking methods use multi-frame data information to realize the correlation between the target trajectory and the detection result in the data association process, and can obtain better tracking performance, simultaneously. Unfortunately, those methods are not used to real-time application scenarios. The online tracking methods only use the single-frame data information to complete the data association between the trajectory and the new target which is often unreliable, thus the data association of the lost target will be invalid and the ideal tracking effect cannot be obtained. For purpose of solving the reliability problem of the detection results, an online multi-target tracking method based on R-FCN framework is proposed. Firstly, a candidate model combining Kalman filtering prediction results with detection results is devised. The candidate targets are no longer only from the detection results, which enhances the robustness of the algorithm. Secondly, the Siamese network framework is applied to realize the similarity measurement with respect to the target appearance, and the multiple feature information of the target is merged to complete the data association between multiple targets, which improves the discriminating ability of the target in the complex tracking scene. In addition, on account of the possible missed detection and false detection of the target trajectory in the complex scene, the RANSAC algorithm is used to optimize the existing tracking trajectory so that we can obtain more complete and accurate trajectory information and synchronously the trajectories are more continuous and smoother. Finally, compared to some existing excellent algorithms, the experimental result indicates that the proposed method has brilliant performances in tracking accuracy, the number of lost tracks and target missed detections.

  • 加载中
  • 图 1  本文算法总流程

    Figure 1.  The general flow of the algorithm

    图 2  候选框选择流程图

    Figure 2.  Candidates selection flow chart

    图 3  R-FCN网络架构

    Figure 3.  R-FCN network architecture

    图 4  Siamese网络结构

    Figure 4.  Siamese network structure diagram

    图 5  目标轨迹存在漏检

    Figure 5.  Missing detection of target trajectory

    图 6  多目标跟踪结果展示图。(a) MOT16-01序列跟踪结果图;(b) MOT16-03序列跟踪结果图;(c) MOT16-06序列跟踪结果图

    Figure 6.  The results of multi-target tracking chart. (a) MOT16-01 sequence tracking result chart; (b) MOT16-03 sequence tracking result chart; (c) MOT16-06 sequence tracking result chart

    表 1  在MOT16训练集上验证算法各个模块的有效性

    Table 1.  Verify the validity of each module of the algorithm on the MOT16 training set

    算法 S R MOTA/(%)↑ FP↓ FN↓ IDSW↓
    基准算法 28.9 2493 75805 686
    32.8 4159 69428 452
    37.7 10803 57430 537
    本文算法 39.8 6131 59898 328
    注:最优算法性能指标记为红色,次优算法性能指标记为绿色。
    下载: 导出CSV

    表 2  MOT16测试集实验结果对比

    Table 2.  Comparison of experimental results of MOT16 test set

    算法 MOTA/(%)↑ MT/(%)↑ ML/(%)↓ FP↓ FN↓
    GMMCP[11] 38.1 8.6 50.9 6607 105315
    MHT_DAM[13] 45.8 16.2 43.2 6412 91758
    HLSP_T[8]* 35.9 8.7 50.1 6412 107918
    CDA_DDAL[9]* 43.9 10.7 44.4 6450 95175
    AMIR[7]* 47.2 14.0 41.6 2681 92856
    本文算法* 48.7 15.7 39.6 6632 86504
    注:最优算法性能指标记为红色,次优算法性能指标记为绿色。
    下载: 导出CSV

    表 3  不同算法跟踪速率对比

    Table 3.  Speed comparison of various tracking algorithms

    算法 速度/(f·s-1)
    GMMCP[11] 0.5
    CDA_DDAL[9]* 0.5
    MHT_DAM[13] 0.8
    AMIR[7]* 1.0
    HLSP_T[8]* 4.8
    本文算法* 9.7
    下载: 导出CSV
  • [1]

    Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031

    [2]

    Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016: 779-788.

    [3]

    刘鑫, 金晅宏.四帧间差分与光流法结合的目标检测及追踪[J].光电工程, 2018, 45(8): 170665. doi: 10.12086/oee.2018.170665

    Liu X, Jin X H. Algorithm for object detection and tracking combined on four inter-frame difference and optical flow methods[J]. Opto-Electronic Engineering, 2018, 45(8): 170665. doi: 10.12086/oee.2018.170665

    [4]

    Bewley A, Ge Z Y, Ott L, et al. Simple online and realtime tracking[C]//2016 IEEE International Conference on Image Processing (ICIP), Phoenix, 2016: 3464-3468.

    [5]

    Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric[C]//2017 IEEE International Conference on Image Processing (ICIP), Beijing, 2017: 3645-3649.

    [6]

    Thoreau M, Kottege N. Improving online multiple object tracking with deep metric learning[Z]. arXiv: 1806.07592v2[cs: CV], 2018.

    [7]

    Sadeghian A, Alahi A, Savarese S. Tracking the untrackable: Learning to track multiple cues with long-term dependencies[Z]. arXiv: 1701.01909[cs: CV], 2017.

    [8]

    Baisa N L. Online multi-target visual tracking using a HISP filter[C]//13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Funchal, 2018.

    [9]

    Bae S H, Yoon K J. Confidence-based data association and discriminative deep appearance learning for robust online multi-object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(3): 595-610. doi: 10.1109/TPAMI.2017.2691769

    [10]

    Milan A, Schindler K, Roth S. Multi-target tracking by discrete-continuous energy minimization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2054-2068. doi: 10.1109/TPAMI.2015.2505309

    [11]

    Dehghan A, Assari S M, Shah M. GMMCP tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 2015: 4091-4099.

    [12]

    齐美彬, 岳周龙, 疏坤, 等.基于广义关联聚类图的分层关联多目标跟踪[J].自动化学报, 2017, 43(1): 152-160. http://d.old.wanfangdata.com.cn/Periodical/zdhxb201701013

    Qi M B, Yue Z L, Shu K, et al. Multi-object tracking using hierarchical data association based on generalized correlation clustering graphs[J]. Acta Automatica Sinica, 2017, 43(1): 152-160. http://d.old.wanfangdata.com.cn/Periodical/zdhxb201701013

    [13]

    Wen L Y, Li W B, Yan J J, et al. Multiple target tracking based on undirected hierarchical relation hypergraph[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 1282-1289.

    [14]

    Zagoruyko S, Komodakis N. Learning to compare image patches via convolutional neural networks[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 2015: 4353-4361.

    [15]

    Dai J F, Li Y, He K M, et al. R-FCN: Object detection via region-based fully convolutional networks[Z]. arXiv: 1605.06409[cs: CV], 2016.

    [16]

    Iandola F N, Han S, Moskewicz M W, et al. SqueezeNet: Alexnet-level accuracy with 50x fewer parameters and < 0.5 MB model size[Z]. arXiv: 1602.07360[cs: CV], 2016.

    [17]

    He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[Z]. arXiv: 1406.4729[cs: CV], 2014.

    [18]

    He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016: 770-778.

    [19]

    Zheng L, Shen L Y, Tian L, et al. Scalable person re-identification: A benchmark[C]//2015 IEEE International Conference on Computer Vision (ICCV), Santiago, 2015: 1116-1124.

    [20]

    Bernardin K, Stiefelhagen R. Evaluating multiple object tracking performance: the CLEAR MOT metrics[J]. EURASIP Journal on Image and Video Processing, 2008, 2008: 246309. doi: 10.1155/2008/246309

  • 加载中

(6)

(3)

计量
  • 文章访问数: 
  • PDF下载数: 
  • 施引文献:  0
出版历程
收稿日期:  2019-03-25
修回日期:  2019-06-27
刊出日期:  2020-01-01

目录

/

返回文章
返回