-
摘要
研制了一种新型光谱感光仪,其特点是宽光谱(340 nm~900 nm),大曝光面(202 mm×90.5 mm),且面上具有多阶梯光强;制备具有18级光密度值的高精密阶梯光楔板,每个台阶的光密度值误差不大于0.01;根据光源的光谱特性镀制滤光膜,消除光栅二级光谱。自动控制采集系统采用LabVIEW与PLC一体机开发,水平方向采用光栅位移传感器构成闭环控制,波长定位偏差小于0.05 nm;竖直方向采用线性补偿方法,高度位置偏差小于0.05 mm。仪器能够自动测量光楔板上不同波长不同光强区域的单位面积光功率,用快门控制曝光时间,在宽光谱范围内对感光材料进行一次曝光。在显影定影后,用光密度计测量其光密度值,根据国标(GB10557-89)绘制出感光材料某一确定光密度值的光谱灵敏度曲线。
Abstract
A new type of spectrosensitometer has been developed, which is characterized by a wide spectrum range of 340 nm ~ 900 nm and a large exposed area of 202 mm × 90.5 mm with multi-step light intensities on it. The optical density value error of each step on the 18-step wedge with high precision is not greater than 0.01. The film filter evaporated according to the spectral characteristic of the light source can eliminate the secondary spectrum of grating. The automatic control acquisition system is developed by LabVIEW and all-in-one PLC with HMI. In the horizontal direction, the grating displacement sensor is adopted to form the closed-loop control, and the wavelength positioning deviation is less than 0.05 nm. Linear compensation method is adopted in the vertical direction with a height deviation of less than 0.05 mm. The spectrosensitometer automatically measures the optical power per unit area of lights with different wavelengths and light intensities on the step wedge. The shutter controls exposure time. Photosensitive materials are once exposed within the scope of the wide spectrum. After being developed and fixed, the optical density value can be measured by densitometer. The spectral sensitivity curve of a photosensitive material with a certain optical density value can be drawn according to the national standard (GB10557-89).
-
Key words:
- spectral sensitivity /
- optical density /
- spectrum /
- light intensity /
- step wedge
-
Overview
Overview: Spectral sensitivity is one of the most important characteristics of photosensitive materials, which represents the photographic effect of photosensitive materials on radiation of different wavelengths. There are many kinds of instruments used to measure the spectral sensitivity curves of photosensitive materials, but these instruments are old, cumbersome and inefficient. In addition, because of the low energy of ultraviolet band and the uneven distribution of the light intensity on the spectral surface, the equipment, which is built by improving the spectrograph, cannot be used to draw the photosensitive curve of photosensitive materials. Therefore, a new type of spectrosensitometer has been developed, which is made up of a homemade 110 mm × 110 mm blazed grating and a cylindrical reflector with a curvature radius of 1643.59 mm, to produce a 202 mm × 90.5 mm spectrum plane. The operating wavelength ranges from 340 nm to 900 nm. The optical density value error of each step on the 18-step wedge with high precision, which is invented by means of evaporation and ions beam etching micro-compensation technology, is not greater than 0.01. The step wedge is placed on the spectrum to form a stepped distribution (vertical direction) of the spectral intensity of each wavelength. The step wedge engraves with spectral wavelength carved lines, the positioning line and the wavelength calibration engraved line. According to the spectral characteristic of the light source, the filter film is plated in the geometric region corresponding to the band of 600 nm ~ 900 nm of the step wedge to eliminate the secondary spectrum of the grating. The film filter evaporated according to the spectral characteristic of the light source can eliminate the secondary spectrum of grating. The automatic control acquisition system is developed by LabVIEW and all-in-one PLC with HMI. The ball screws are used as vertical and horizontal displacement device. In the horizontal direction, the grating displacement sensor is adopted to form the closed-loop control, and the wavelength positioning deviation is less than 0.05 nm. Linear compensation method is adopted in the vertical direction with a height deviation of less than 0.05 mm. Spectrosensitometer automatically measures optical power of lights with different wavelengths and light intensities on the step wedge. The shutter controls exposure time. Photosensitive materials are once exposed within the scope of the wide spectrum. After being developed and fixed, the optical density value can be measured by densitometer. The spectral sensitivity curve of a photosensitive material with a certain optical density value can be drawn according to the national standard (GB10557-89).
-
-
表 1 光学系统设计参数
Table 1. Optical system design parameters
尺寸 倾斜角度/(°) 曲率半径/mm 光栅线数/(l/mm) 光束入射角度/(°) 槽形角/(°) 平面反射镜 62 mm×62 mm×6 mm 45.00 凹面反射镜 ϕ148 mm×25 mm 17.95 640 闪耀光栅 110 mm×110 mm×12 mm 10.94 350 25 6 柱面反射镜 390 mm×110 mm×50 mm 5.90 1643.59 -
参考文献
[1] 李景镇.光学手册[M].西安:陕西科学技术出版社, 1986: 2481-2518.
[2] 陈子辉, 李庆喜, 张复实.高灵敏化学型非银盐感光材料的研发策略——从银盐感光材料说起[J].信息记录材料, 2013, 14(4): 31-35. doi: 10.3969/j.issn.1009-5624.2013.04.007
Chen Z H, Li Q X, Zhang F S. Strategies toward highly sensitive non-silver, photochemical imaging materials[J]. Information Recording Materials, 2013, 14(4): 31-35. doi: 10.3969/j.issn.1009-5624.2013.04.007
[3] 国家技术监督局.感光材料光谱灵敏度测定方法: GB/T 10557-1989[S]. 1989.
State Bureau of Technical Supervision. Method for determination of spectral sensitivity of photographic materials: GB/T 10557-1989[S]. 1989.
[4] 库奇科A C.航空摄影学: 原理与质量评价[M].蔡俊良, 沈鸣岐, 译.北京: 测绘出版社, 1982: 177.
Kuchko A C. Aerial Photography Principle and Quality Evaluation[M]. Cai J L, Shen M Q, trans. Beijing: Surveying and Mapping Press, 1982: 177.
[5] 皮·格拉夫基德.照相化学-第三分册: 彩色复演[M].陈光民, 译.北京: 中国电影出版社, 1992: 167-168.
Pierre G. Chimie Photographique[M]. Chen G M, trans. Beijing: China Film Press, 1992: 167-168.
[6] Cogley R M, Knight S E, Toomey T J. Measuring photoresist spectral response with a spectrosensitometer[J]. Proceedings of SPIE, 1988, 922: 212-216. doi: 10.1117/12.968415
[7] 王弘钰. 8098单片机在光谱感光仪上的应用研究[J].光学 精密工程, 1991(2): 120-123. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM199102028.htm
Wang H Y. Application of spectrum photosensitive instrument using 8098-single-chip microcomputer[J]. Optics and Precision Engineering, 1991(2): 120-123. http://www.cnki.com.cn/Article/CJFDTOTAL-GXJM199102028.htm
[8] Walker R A. An equal-energy scanning spectrosensitometer[J]. Photographic Science and Engineering, 1970, 14(6): 421-427. http://cn.bing.com/academic/profile?id=6382cae1a3f94140000bf90b6a672018&encoded=0&v=paper_preview&mkt=zh-cn
[9] 孙乐, 黄元申, 盛斌, 等.感光材料光谱灵敏度测定曝光系统的设计[J].光电工程, 2016, 43(12): 72-78. doi: 10.3969/j.issn.1003-501X.2016.12.012
Sun L, Huang Y S, Sheng B, et al. Design of exposure system for the spectral sensitivity detection of the photosensitive material[J]. Opto-Electronic Engineering, 2016, 43(12): 72-78. doi: 10.3969/j.issn.1003-501X.2016.12.012
[10] Banning M. Neutral density filters of chromel A[J]. Journal of the Optical Society of America, 1947, 37(9): 686-687. doi: 10.1364/JOSA.37.000686
[11] Frenkel A, Zhang Z M. Broadband high-optical-density filters in the infrared[J]. Optics Letters, 1994, 19(18): 1495-1497. doi: 10.1364/OL.19.001495
[12] Bittar A, White M G. Design of ultraviolet neutral density filters using metal-insulator inhomogeneous layers[J]. Applied Optics, 1992, 31(28): 6122-6126. doi: 10.1364/AO.31.006122
[13] 国家机械工业局.光学零件镀膜中性滤光膜: JB/T 8226.5—1999[S].北京: 中国机械工业出版社, 2000.
State Bureau of Machine Building Industry. Coating for optical element neutral-filter coating: JB/T 8226.5—1999[S]. Beijing: China Machinery Industry Press, 2000.
[14] 中华人民共和国工业和信息化部.线性渐变中性密度滤光片: JB/T 11532—2013[S].北京: 机械工业出版社, 2013.
Ministry of Industry and Information Technology of the People's Republic of China. Linear variable neutral density filters: JB/T 11532—2013[S]. Beijing: China Machine Press, 2013.
[15] 李学瑞, 武文革, 安春华, 等. Ni80Cr20合金薄膜制备影响因素的试验研究[J].工具技术, 2017, 51(7): 39-41. doi: 10.3969/j.issn.1000-7008.2017.07.010
Li X R, Wu W G, An C H, et al. Research for preparation affecting factor of Ni80Cr20 alloy film[J]. Tool Engineering, 2017, 51(7): 39-41. doi: 10.3969/j.issn.1000-7008.2017.07.010
[16] 王忠连, 王瑞生, 阴晓俊, 等.镀制方式对高衰减镍铬合金膜中性度的影响[J].光电工程, 2014, 41(8): 90-94. doi: 10.3969/j.issn.1003-501X.2014.08.015
Wang Z L, Wang R S, Yin X J, et al. The influence of different coating process on density neutrality of deep attenuation Ni-Cr film[J]. Opto-Electronic Engineering, 2014, 41(8): 90-94. doi: 10.3969/j.issn.1003-501X.2014.08.015
[17] 苏仔见, 倪攀, 许少伦. LabVIEW在运动控制系统实验平台的应用和实现[J].实验室研究与探索, 2011, 30(10): 38-39, 110. doi: 10.3969/j.issn.1006-7167.2011.10.011
Su Z J, Ni P, Xu S L. Realization of motion control system experimental platform based on LabVIEW[J]. Research and Exploration in Laboratory, 2011, 30(10): 38-39, 110. doi: 10.3969/j.issn.1006-7167.2011.10.011
[18] Dixit S A, Jain A. Implementation of PPC-SSR as final control element and interfacing of PLC with LabVIEW using modbus in two tank non interacting level control system[C]//Proceedings of the 1st IEEE International Conference on Power Electronics, Intelligent Control and Energy Systems, Delhi, India, 2016: 1-6.
[19] Wang G S, Deng Y, Xie Q, et al. Design electric closed-loop of multidrive NC servo control system based on LabVIEW[C]//Proceedings of the IEEE 4th International Conference on Digital Manufacturing & Automation, Qingdao, China, 2013: 449-452.
[20] Junoh S C K, Abdullah L, Jamaludin Z, et al. Evaluation of tracking performance of NPID double hyperbolic controller design for XY table ball-screw drive system[C]//Proceedings of the 11th IEEE Asian Control Conference, Gold Coast, QLD, Australia, 2017: 665-670.
[21] Niranjan P, Shetty S C, Byndoor C D, et al. Friction identification and control of ball screw driven system using PLC[C]//Proceedings of 2016 IEEE International Conference On Recent Trends in Electronics, Information & Communication Technology, Bangalore, India, 2016: 803-808.
-
访问统计