-
摘要:
超构表面是一种基于亚波长结构的功能膜层器件,也称超表面或二维超构材料。超构表面可在平面化的亚波长结构内产生异常的相位突变,从而为包括大口径平面成像、电磁虚拟赋形、大视场全息显示等应用提供有效手段。与传统的光学器件相比,超构表面器件具有亚波长尺度相位、振幅、偏振任意调控,轻薄、易集成、低损耗、表面可共形设计等诸多优点,因而受到广泛关注。本文对超构表面的相位调控原理进行分析,并据此对现有的超构表面进行分类,同时介绍了各类超构表面器件的特点和应用,最后对超构表面领域面临的挑战及有待进一步拓展的方向进行展望。
Abstract:Metasurfaces, the equivalent two-dimensional (2D) metamaterials, are thin-film functional devices constructed by subwavelength structures. Abrupt phase changes can be obtained in the planar metasurface structures over the subwavelength scale, which provide a new avenue to enable a variety of applications, including large scale planar imaging, electromagnetic virtual shaping and holographic display with large field of view. The arbitrary modulation abilities of phase, amplitude and polarization at the subwavelength scale, also the light weight, low loss, integratable and conformable design make the metasurfaces very attractive, compared to the traditional optical devices. In this paper, we review the mechanisms of the phase modulation and classify the metasurfaces based on them. The properties and the applications of each type of metasurfaces are also detailedly discussed. The challenges faced by metasurfaces and the areas which need to be further extended are also summarized.
-
Key words:
- metasurface /
- metamaterials /
- phase /
- Snell's law
-
Abstract:Conventional refractive optical components such as lenses and prism modifying the wavefronts rely on light propagation over distances much larger than the wavelength, which makes them bulky and weighty. To address this issue, binary optics was proposed in the end of 1980s. Secondary waves created by binary optical components such as holograms diffract in free space and interfere in the far-field to form complex optical patterns. The phase of the secondary waves is modulated through propagation delay in a discrete and planar way. However, the chromatism in diffraction and the limited field of view due to the relatively large scale of phase modulation, limit the applications of the binary optical components. Recently, a type of flat, ultrathin optical components called ‘metasurfaces’ was proposed. Metasurfaces, seen as the two-dimensional equivalents of metamaterials, are thin-film functional devices constructed by subwavelength structures. Benefiting from their simplified fabrication process of planar profiles and low electromagnetic energy loss compared to metamaterials, metasurfaces are promising for integration with on-chip nanophotonic devices. Abrupt phase changes can be obtained in the planar metasurface structures over the scale of the wavelength, which provide a new avenue to enable a variety of applications including large scale planar imaging, electromagnetic virtual shaping and holographic display in larger field of view. The arbitrary modulation abilities of phase, amplitude and polarization at the subwavelength scale, also the integratable and conformable design make the metasurfaces very attractive. The devices based on metasurface can be designed to possess many required properties replacing bulky optical components. In this paper, we give a brief introduction of the development of the metasurface in an historical perspective. We focus on recent developments of the flat, ultrathin optical and electromagnetic components based on metasurfaces. The physical mechanism of the phase modulation in metasurfaces is analyzed and classified. These types of phase modulation in metasurface, i.e., transmission phase modulation, circuit-type phase modulation, and geometric (or Pancharatnam- Berry) phase modulation, are comprehensively introduced. The unique properties and the applications of each type of metasurface are detailedly discussed. We also review some newly designed novel metasurfaces which make use of merging phase modulation. Furthermore, the magnitude modulation, and the polarization modulation accompanied in the phase modulation of metasurfaces are introduced. At last, we summarize the challenges faced by metasurfaces with an eye toward the promising future directions in this field.
-
图 3 (a) SP波导型消色差超构表面结构及不同波长下的聚焦特性[32]. (b)介质型消色差超构表面结构及不同波长下的聚焦特性[45]. (c)等效折射率调制型超构表面及不同波长下的聚焦特性[31].
Figure 3. (a) Achromatic metasurface based on SP waveguide and its focusing properties at different wavelengths [32]. (b) Achromatic dielectric metasurface and its focusing properties at different wavelengths [45]. (c) Metasurface based on modulation of effective refraction index and its focusing properties at different wavelengths [31].
图 5 亚波长结构及等效电路模型. (b)不同间隙宽度g对应的相位延迟,px=5.2 mm,py=7.4 mm,w=2 mm,w1=0.1 mm,t=0.035 mm,介质基底折射率为1.58,d=6 mm[46].
Figure 5. (a) Equivalent circuit of subwavelength structure. (b) Dependence of phase shift on the gap g, px=5.2 mm, py=7.4 mm, w=2 mm, w1=0.1 mm, t=0.035 mm, the refraction index nd=1.58, d=6 mm [46].
图 6 双层透射式电路型相位超构表面单元结构(a)及其光束整形(b)[48].三层透射式电路型相位超构表面结构(c)及其电磁偏折(d) [50].
Figure 6. (a) Unit cell of double layered transmissive metasurface based on circuit-type phase modulation. (b) Beam shaping by the double layered transmissive metasurface [48]. (c) Schematic of triple layered transmissive metasurface based on circuit-type phase. (d) Beam deflection by the triple layered transmissive metasurface [50].
图 7 反射式电路型相位超构表面器件.偏折器件结构(a)和场分布(b)[46].表面波定向耦合器件结构(c)和场分布(d)[58].全息器件结构(e)和全息效果图(f)[61].
Figure 7. Reflective metasurface devices based on circuit-type phase modulation. (a) Schematic of the deflector and (b) its field distribution [46]. (c) Picture of directional coupler of surface wave. (d) Field distributions on surface of the coupler [58]. (e) SEM image of metasurface hologram. (f) Schematic of holographic projection [61].
图 8 基于色散调控宽带电路型相位超构表面器件.宽带吸收器件单元结构(a)和吸收谱(b)[54].微波段一维色散调控偏振转化器件结构(c)和反射谱(d)[47].太赫兹波段一维色散调控偏振转化器件结构(e)和反射谱(f)[62].二维色散调控偏振转化器件结构(g)和反射谱(h)[56].
Figure 8. Broadband metasurface devices based on circuit-type phase modulation through dispersion engineering. (a) Unit cell of broadband absorber. (b) Absorption spectrum of the broadband absorber [54]. (c) Broadband microwave polarization transformer through one dimensional dispersion engineering and (d) its reflection spectrum [47]. (e) Broadband THz polarization transformer through one dimensional dispersion engineering and (f) its reflection spectrum [62]. (g) Broadband polarization transformer through two dimensional dispersion engineering and (h) its reflection spectrum [56].
图 12 基于几何相位超构表面器件.偏折器件结构(a)和偏折角与入射角关系(b)[67].表面波定向耦合器件结构(c)和耦合场分布(d)[73].聚焦器件结构(e)和聚焦场分布(f)[71].
Figure 12. Metasurface devices based on geometric phase modulation. (a) Schematic of deflector. (b) Dependence of deflective angle on the incident angle [67]. (c) Schematic of directional coupler. (d) Field distributions on surface of the coupler [73]. (e) Schematic of metasurface lens. (f) Field distribution in the metasurface lens [71].
图 13 基于几何相位复杂光场超构表面器件.超振荡透镜结构SEM图(a)和聚焦场分布(b)[74].聚焦涡旋光产生器结构SEM图(c)和场分布(d)[77].全息器件结构SEM图(e)和全息场成像场分布(f)[86].
Figure 13. Metasurface devices for complex optical field generation based on geometric phase modulation. (a) SEM image of superoscillatory lens. (b) Field distribution at the focal plane [74]. (c) SEM image of optical vortex lens. (d) Meso-field distribution of the optical vortex lens [77]. (e) SEM image of meta-hologram. (f) Far-field light-intensity distribution of the holographic image [86].
图 14 超构表面彩色全息器件. (a)基于几何相位彩色全息成像原理. (b) 3D彩色全息成像[81]. (c)基于SP谐振型彩色全息成像方案和成像结果[87]. (d)基于散射振幅型彩色全息成像方案和成像结果[88].
Figure 14. Metasurface devices for multicolor holographic imaging. (a) Schematic of multicolor meta-holographic imaging based on geometric phase and (b) its 3D multicolor holographic image [81]. (c) Schematic of multicolor meta-holographic imaging based on SP resonance [87] and its multicolor holographic image [87]. (d) Schematic of multicolor meta-holographic imaging based on amplitude modulation and its multicolor holographic image [88].
图 15 (a) 悬链线超构单元示意图和SEM图. (b)悬链线相位调控特性. (c)悬链线超构单元产生光自旋霍尔效应[90].
Figure 15. (a) Schematic and the SEM image of the catenary aperture. (b) Phase distributions of the catenary (red), parabola (orange), crescent (blue), and discrete antennas (black dot) for LCP illumination. (c) Angular Spin Hall effect observed in a single catenary aperture [90].
图 17 相干照明提高超构表面能量利用率[94]. (a)相干照明光路图. (b), (c) 532 nm波长(b)和632.8 nm波长(c)入射,相干与非相干照明情况对比.
Figure 17. Efficiency enhancement by coherent illumination [94]. (a) Experimental configuration of coherent illumination. Measured results of the abnormal transmission and reflection at (b) λ= 532 nm and (c) λ= 632.8 nm.
图 18 反射式几何相位型超构表面器件. (a)全息器件效率谱及成像结果[102]. (b)平面虚拟赋形器件及其反射谱[101]. (c)电磁幻象器件及其隐身效果[104].
Figure 18. Reflective metasurface devices based on geometric phase modulation. (a) Efficiency spectrum of the holographic device and the holographic image [102]. (b) Schematic of virtual shaping by planar metasurface and the measurement results of the reflectance spectra for TE and TM polarization illuminations [101]. (c) Schematic of electromagnetic illusion by metasurface and the optical reflection images when the metasurface cloak is "on" and "off" [104].
图 21 Ⅴ形天线超构表面器件. (a) Ⅴ形金属结构聚焦透镜[116]. (b) Ⅴ形狭缝结构聚焦透镜[119]. (c)双层Ⅴ形结构偏折器[121]. (d) Ⅴ形变形结构(C形结构)偏折器[123].
Figure 21. Metasurface devices based on Ⅴ-shaped antennas. (a) Lens based on Ⅴ-shaped metallic particles [116]. (b) Lens based on Ⅴ-shaped metallic slits [119]. (c) Deflector based on double layered Ⅴ-shaped structures [121]. (d) Deflector based on C-shaped structures [123].
图 22 传输相位和几何相位同时调控型介质超构表面器件. (a)涡旋光束产生其结构及其远场分布[111]. (b)可切换全息结构和光场图[124].
Figure 22. Dielectric metasurface devices based on the merge of transmission phase and geometric phase modulations. (a) Optical vortex generator and its far-field distribution [111]. (b) Polarization-switchable hologram and its holographic image [124].
图 23 传输相位和几何相位同时调控型金属超构表面器件. (a)涡旋光束产生结构示意图. (b)产生的拓扑荷l=2和l=1.5漩涡光束场分布[125].
Figure 23. Metallic metasurface devices based on the merge of transmission phase and geometric phase modulations. (a) Schematic of the generation of optical vortex. (b) Field distribution of optical vortex for topological charge l=2 and l=1.5 [125].
图 24 振幅和相位同时调控超构表面器件. (a) 二阶振幅加相位型超构表面及其全息成像,振幅“1”, “0”离散化[126]. (b) 二阶振幅加相位型超构表面及涡旋光分束,振幅“1”, “0.5”离散化[128]. (c) 二阶相位加振幅调控型超构表面及其多级衍射[127].
Figure 24. Metasurface devices based on the merge of amplitude and phase modulations. (a) Meta-hologram based on phase and two-level amplitude modulations and its holographic image, “1” and “0” discretion for amplitude [126]. (b) Metasurface optical vortex beam splitter based on phase and two-level amplitude modulations and its field distribution, “1” and “0.5” discretion for amplitude [128]. (c) Metasurface based on amplitude and two-level phase modulations and its multi-order diffraction [127].
-
[1] Lee S H. Diffractive and miniaturized optics[M]. San Diego, California: Society of Photo Optical, 1994.
[2] 金国藩, 严瑛白, 邬敏贤, 等.二元光学[M].北京:国防工业出版社, 1998.
[3] 罗先刚.亚波长电磁学[M].北京:科学出版社, 2017.
Luo Xiangang. Sub-wavelength electromagnetics[M]. Beijing: Science Press, 2017.
[4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79. doi: 10.1126/science.1058847
[5] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792. doi: 10.1126/science.1096796
[6] 郭迎辉, 蒲明博, 马晓亮, 等.电磁超构材料色散调控研究进展[J].光电工程, 2017, 44(1): 3-22. http://www.oee.ac.cn/CN/abstract/abstract1868.shtml
Guo Yinghui, Pu Mingbo, Ma Xiaoliang, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3-22. http://www.oee.ac.cn/CN/abstract/abstract1868.shtml
[7] Luo Xiangang, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780-4782. doi: 10.1063/1.1760221
[8] Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110. doi: 10.1063/1.4914000
[9] Luo Xiangang, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance[J]. Optics Express, 2004, 12(14): 3055-3065. doi: 10.1364/OPEX.12.003055
[10] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782. doi: 10.1126/science.1125907
[11] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628
[12] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission[J]. Physical Review Letters, 2002, 89(21): 213902. doi: 10.1103/PhysRevLett.89.213902
[13] Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127. https://www.hindawi.com/journals/ijap/2015/204127/fig52/
[14] Pu Mingbo, Ma Xiaoliang, Li Xiong, et al. Merging plasmonics and metamaterials by two-dimensional subwavelength structures[J]. Journal of Materials Chemistry C, 2017. DOI: 10.1039/c7tc00440k.
[15] Yu Nanfang, Capasso Federico. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839
[16] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009
[17] Kock W E. Metallic delay lenses[J]. Bell System Technical Journal, 1948, 27(1): 58-82. doi: 10.1002/bltj.1948.27.issue-1
[18] Berry D, Malech R, Kennedy W. The reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(6): 645-651. doi: 10.1109/TAP.1963.1138112
[19] Munk B A. Frequency selective surfaces: theory and design[M]. New York: John Wiley & Sons, 2000.
[20] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201. https://link.springer.com/article/10.1007/s11433-015-5688-1
[21] 赵泽宇, 蒲明博, 王彦钦, 等.广义折反射定律[J].光电工程, 2017, 44(2): 129-139. http://www.oee.ac.cn/CN/abstract/abstract1889.shtml
Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 2017, 44(2): 129-139. http://www.oee.ac.cn/CN/abstract/abstract1889.shtml
[22] 罗先刚, 徐挺, 杜春雷, 等. 一种包含纳米缝的金属膜透镜: 中国, CN200710177752. 5[P]. 2008-04-09.
Luo Xiangang, Xu Ting, Du Chunlei, et al. Metal membrane lens including Nano seam: China, CN200710177752. 5[P]. 2008-04-09.
[23] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759. doi: 10.1364/OE.16.004753
[24] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
[25] Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5: 15020. doi: 10.1038/srep15020
[26] Xu Ting, Du Chunlei, Wang Changtao, et al. Subwavelength imaging by metallic slab lens with nanoslits[J]. Applied Physics Letters, 2007, 91(20): 201501. doi: 10.1063/1.2811711
[27] Wang Dacheng, Huang Qin, Qiu Chengwei, et al. Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(8): 084201. https://link.springer.com/article/10.1007/s11433-015-5674-7
[28] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212-26221. doi: 10.1364/OE.22.026212
[29] Lalanne Philippe, Astilean Simion, Chavel Pierre, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional xechelette gratings[J]. Optics Letters, 1998, 23(14): 1081-1083. doi: 10.1364/OL.23.001081
[30] Shen Yue, Luo Xiangang. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 2016, 366: 174-178. doi: 10.1016/j.optcom.2015.12.043
[31] Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229-7234. doi: 10.1021/acs.nanolett.6b03626
[32] Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885. doi: 10.1038/srep19885
[33] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar metallic nanoscale slit lenses for angle compensation[J]. Applied Physics Letters, 2009, 95(7): 071112. doi: 10.1063/1.3211875
[34] Ishii S, Shalaev V M, Kildishev A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Letters, 2013, 13(1): 159-163. doi: 10.1021/nl303841n
[35] Lin Ling, Goh X M, McGuinness L P, et al. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for fresnel-region focusing[J]. Nano Letters, 2010, 10(5): 1936-1940. doi: 10.1021/nl1009712
[36] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235-238. doi: 10.1021/nl802830y
[37] Goh X M, Lin L, Roberts A. Planar focusing elements using spatially varying near-resonant aperture arrays[J]. Optics Express, 2010, 18(11): 11683-11688. doi: 10.1364/OE.18.011683
[38] Xu Ting, Fang Liang, Zeng Beibei, et al. Subwavelength nanolithography based on unidirectional excitation of surface plasmons[J]. Journal of Optics A: Pure and Applied Optics, 2009, 11(8): 085003. doi: 10.1088/1464-4258/11/8/085003
[39] Xu Ting, Zhao Yanhui, Gan Dachun, et al. Directional excitation of surface plasmons with subwavelength slits[J]. Applied Physics Letters, 2008, 92(10): 101501. doi: 10.1063/1.2894183
[40] Sun Jingbo, Wang Xi, Xu Tianboyu, et al. Spinning light on the nanoscale[J]. Nano Letters, 2014, 14(5): 2726-2729. doi: 10.1021/nl500658n
[41] Xu Ting, Wu Y K, Luo Xiangang, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nature Communications, 2010, 1: 59. https://www.researchgate.net/publication/47545107_Plasmonic_nanoresonators_for_high_resolution_color_filtering_and_spectral_imaging
[42] Gu Yinghong, Zhang Lei, Yang J K W, et al. Color generation via subwavelength plasmonic nanostructures[J]. Nanoscale, 2015, 7(15): 6409-6419. doi: 10.1039/C5NR00578G
[43] Dionne J A, Baldi A, Baum B, et al. Localized fields, global impact: Industrial applications of resonant plasmonic materials[J]. MRS Bulletin, 2015, 40(12): 1138-1145. doi: 10.1557/mrs.2015.233
[44] Li Xiong, Yang Lanying, Hu Chenggang, et al. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency[J]. Optics Express, 2011, 19(6): 5283-5289. doi: 10.1364/OE.19.005283
[45] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. doi: 10.1126/science.aaa2494
[46] Pu Mingbo, Chen Po, Wang Changtao, et al. Broadband anomalous reflection based on gradient low-Q meta-surface[J]. AIP Advances, 2013, 3(5): 052136. doi: 10.1063/1.4809548
[47] Pu Mingbo, Chen Po, Wang Yanqin, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906. doi: 10.1063/1.4799162
[48] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401. doi: 10.1103/PhysRevLett.110.197401
[49] Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wavefront and polarization control[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4407-4417. doi: 10.1109/TMTT.2013.2287173
[50] Pfeiffer C, Emani N K, Shaltout A M, et al. Efficient light bending with isotropic metamaterial Huygens' surfaces[J]. Nano Letters, 2014, 14(5): 2491-2497. doi: 10.1021/nl5001746
[51] Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi: 10.1021/nl3032668
[52] Pors A, Albrektsen O, Radko I P, et al. Gap plasmon-based metasurfaces for total control of reflected light[J]. Scientific Reports, 2013, 3: 2155. doi: 10.1038/srep02155
[53] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics Express, 2013, 21(22): 27438-27451. doi: 10.1364/OE.21.027438
[54] Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133-2135. doi: 10.1364/OL.37.002133
[55] Pu Mingbo, Hu Chenggang, Wang Min, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413-17420. doi: 10.1364/OE.19.017413
[56] Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434. doi: 10.1038/srep08434
[57] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566-27575. doi: 10.1364/OE.23.027566
[58] Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi: 10.1038/nmat3292
[59] Li Xin, Xiao Shiyi, Cai Bengeng, et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 2012, 37(23): 4940-4942. doi: 10.1364/OL.37.004940
[60] Chen Weiting, Yang Kuangyu, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230. doi: 10.1021/nl403811d
[61] Yifat Y, Eitan M, Iluz Z, et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays[J]. Nano Letters, 2014, 14(5): 2485-2490. doi: 10.1021/nl5001696
[62] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399
[63] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 392(1802): 45-57. doi: 10.1098/rspa.1984.0023
[64] Sichak W, Levine D J. Microwave high-speed continuous phase shifter[J]. Proceedings of the IRE, 1955, 43(11): 1661-1663. doi: 10.1109/JRPROC.1955.277993
[65] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 1956, 44(5): 247-262. https://link.springer.com/article/10.1007/BF03046050
[66] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396
[67] Huang Lingling, Chen Xianzhong, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755. doi: 10.1021/nl303031j
[68] Chen Xianzhong, Huang Lingling, Mühlenbernd H, et al. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens[J]. Advanced Optical Materials, 2013, 1(7): 517-521. doi: 10.1002/adom.v1.7
[69] Chen Xianzhong, Chen Ming, Mehmood M Q, et al. Longitudinal multifoci metalens for circularly polarized light[J]. Advanced Optical Materials, 2015, 3(9): 1201-1206. doi: 10.1002/adom.v3.9
[70] Zhao Zeyu, Pu Mingbo, Gao Hui, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5: 15781. doi: 10.1038/srep15781
[71] Chen Xianzhong, Huang Lingling, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198. doi: 10.1038/ncomms2207
[72] Huang Lingling, Chen Xianzhong, Bai Benfeng, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2013, 2(3): e70. https://www.researchgate.net/profile/Benfeng_Bai/publication/236002864_Helicity_Dependent_Directional_Surface_Plasmon_Polariton_Excitation_Using_A_Metasurface_with_Interfacial_Phase_Discontinuity/links/00b4953c5c7b88faca000000.pdf
[73] Lin Jiao, Mueller J P B, Wang Qian, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334. doi: 10.1126/science.1233746
[74] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719. https://www.onlinelibrary.wiley.com/doi/10.1002/lpor.201500182
[75] Jin Jinjin, Luo Jun, Zhang Xiaohu, et al. Generation and detection of orbital angular momentum via metasurface[J]. Scientific Reports, 2016, 6: 24286. doi: 10.1038/srep24286
[76] Yang Kunpeng, Pu Mingbo, Li Xiong, et al. Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface[J]. Nanoscale, 2016, 8(24): 12267-12271. doi: 10.1039/C5NR09209D
[77] Ma Xiaoliang, Pu Mingbo, Li Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365. doi: 10.1038/srep10365
[78] Brasselet Etienne, Gervinskas Gediminas, Seniutinas Gediminas, et al. Topological Shaping of Light by Closed-Path Nanoslits[J]. Physical Review Letters, 2013, 111(19): 193901. doi: 10.1103/PhysRevLett.111.193901
[79] Li Yang, Li Xiong, Chen Lianwei, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502.
[80] Ren Haoran, Li Xiangping, Zhang Qiming, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805-809. doi: 10.1126/science.aaf1112
[81] Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102
[82] Zhang Xiaohu, Jin Jinjin, Pu Mingbo, et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes[J]. Nanoscale, 2017, 9(4): 1409-1415. doi: 10.1039/C6NR07854K
[83] Huang Lingling, Mühlenbernd Holger, Li Xiaowei, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449. doi: 10.1002/adma.201502541
[84] Huang Lingling, Chen Xianzhong, Mühlenbernd Holger, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. https://www.ece.nus.edu.sg/stfpage/eleqc/holography-metasurface-nc13.pdf
[85] Wen Dandan, Yue Fuyong, Li Guixin, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241
[86] Zhang Xiaohu, Jin Jinjin, Wang Yanqin, et al. Metasurface- based broadband hologram with high tolerance to fabrication errors[J]. Scientific Reports, 2016, 6: 19856. doi: 10.1038/srep19856
[87] Huang Yaowei, Chen Weiting, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127. doi: 10.1021/acs.nanolett.5b00184
[88] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679-12683. doi: 10.1073/pnas.1405262111
[89] Ozaki M, Kato J I, Kawata S. Surface-plasmon holography with white-light illumination[J]. Science, 2011, 332(6026): 218-220. doi: 10.1126/science.1201045
[90] Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6: e16276. http://www.nature.com/lsa/journal/v6/n6/fig_tab/lsa2016276f4.html
[91] Heyman J. Hooke's cubico-parabolical conoid[J]. Notes and Records of the Royal Society, 1998, 52(1): 39-50. doi: 10.1098/rsnr.1998.0033
[92] Wang Yanqin, Pu Mingbo, Zhang Zuojun, et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]. Scientific Reports, 2015, 5: 17733. https://www.researchgate.net/publication/285782252_Quasi-continuous_metasurface_for_ultra-broadband_and_polarization-controlled_electromagnetic_beam_deflection
[93] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154. doi: 10.1038/srep30154
[94] Li Xiong, Pu Mingbo, Wang Yanqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Advanced Optical Materials, 2016, 4(5): 659-663. doi: 10.1002/adom.v4.5
[95] Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524
[96] Sun Hongbo. The mystical interlinks: mechanics, religion or optics?[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(1): 614202. http://engine.scichina.com/publisher/scp/journal/SCPMA/59/1/10.1007/s11433-015-5763-7?slug=full%20text
[97] Hong Minghui. Metasurface wave in planar Nano-photonics[J]. Science Bulletin, 2016, 61(2): 112-113. doi: 10.1007/s11434-015-0948-z
[98] Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen[J]. Physical Review Letters, 2013, 110(20): 203903. doi: 10.1103/PhysRevLett.110.203903
[99] Kang Ming, Feng Tianhua, Wang Huitian, et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 2012, 20(14): 15882-15890. doi: 10.1364/OE.20.015882
[100] Ding Xumin, Monticone F, Zhang Kuang, et al. Ultrathin pancharatnam-berry metasurface with maximal cross-polari-zation efficiency[J]. Advanced Materials, 2015, 27(7): 1195- 1200. doi: 10.1002/adma.201405047
[101] Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822. doi: 10.1038/srep09822
[102] Zheng Guoxing, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
[103] Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202-1206. doi: 10.1126/science.aaf3417
[104] Ni Xingjie, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. doi: 10.1126/science.aac9411
[105] Bomzon Z, Biener G, Kleiner V, et al. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings[J]. Optics Letters, 2002, 27(5): 285-287. doi: 10.1364/OL.27.000285
[106] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143. doi: 10.1364/OL.27.001141
[107] Levy U, Kim H C, Tsai C H, et al. Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation[J]. Optics Letters, 2005, 30(16): 2089-2091. doi: 10.1364/OL.30.002089
[108] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644
[109] Lin Dianmin, Fan Pengyu, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. doi: 10.1126/science.1253213
[110] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam-berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328-330. doi: 10.1063/1.1539300
[111] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943. doi: 10.1038/nnano.2015.186
[112] Deng Yongbo, Liu Zhenyu, Liu Yongmin, et al. Inverse design of dielectric resonator cloaking based on topology optimization[J]. Plasmonics, 2016. doi: 10.1007/s11468-016-0438-4.
[113] Ni Xingjie, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686
[114] Jiao Jiao, Li Xiong, Huang Xiaoping, et al. Improvement of focusing efficiency of plasmonic planar lens by oil immersion[J]. Plasmonics, 2015, 10(3): 539-545. doi: 10.1007/s11468-014-9838-5
[115] Yin Xiaobo, Ye Ziliang, Rho J, et al. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407. doi: 10.1126/science.1231758
[116] Lin Jing, Wu Shibin, Li Xiong, et al. Design and numerical analyses of ultrathin plasmonic lens for subwavelength focusing by phase discontinuities of nanoantenna arrays[J]. Applied Physics Express, 2013, 6(2): 022004. doi: 10.7567/APEX.6.022004
[117] Genevet P, Yu Nanfang, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 2012, 100(1): 013101. doi: 10.1063/1.3673334
[118] Aieta F, Genevet P, Yu Nanfang, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702-1706. doi: 10.1021/nl300204s
[119] Ni Xingjie, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72. https://engineering.purdue.edu/~shalaev/Publication_list_files/LSA_Ni_2013.pdf
[120] Hu Dan, Wang Xinke, Feng Shengfei, et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 2013, 1(2): 186-191. doi: 10.1002/adom.201200044
[121] Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1): e1501168. doi: 10.1126/sciadv.1501168
[122] Wang Qiu, Zhang Xueqian, Xu Yuehong, et al. A broadband metasurface-based terahertz flat-lens array[J]. Advanced Optical Materials, 2015, 3(6): 779-785. doi: 10.1002/adom.v3.6
[123] Zhang Xueqian, Tian Zhen, Yue Weisheng, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567-4572. doi: 10.1002/adma.201204850
[124] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
[125] Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029. doi: 10.1021/acsphotonics.6b00564
[126] Ni Xingjie, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807. https://www.researchgate.net/publication/258527567_Metasurface_holograms_for_visible_light
[127] Liu Lixiang, Zhang Xueqian, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29): 5031-5036. doi: 10.1002/adma.201401484
[128] Jin Jinjin, Pu Mingbo, Wang Yanqin, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201. doi: 10.1002/admt.201600201
[129] Lee J, Tymchenko M, Argyropoulos C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions[J]. Nature, 2014, 511(7507): 65-69. doi: 10.1038/nature13455
[130] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nature Communications, 2016, 7: 10367. doi: 10.1038/ncomms10367
[131] Ye Weimin, Zeuner F, Li Xin, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930. doi: 10.1038/ncomms11930
[132] Ma Xiaoliang, Pan Wenbo, Huang Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945-949. doi: 10.1002/adom.v2.10
[133] Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed Nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805- 18812. doi: 10.1039/C5NR05153C
[134] Luo Xiangang, Yan Lianshan. Surface plasmon polaritons and its applications[J]. IEEE Photonics Journal, 2012, 4(2): 590- 595. doi: 10.1109/JPHOT.2012.2189436
[135] Lin Dianmin, Tao Hu, Trevino J, et al. Direct transfer of subwavelength plasmonic nanostructures on bioactive silk films[J]. Advanced Materials, 2012, 24(45): 6088-6093. doi: 10.1002/adma.v24.45
[136] Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137
[137] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi: 10.1021/acs.nanolett.6b00618
[138] Li Xiong, Feng Qin, Luo Xiangang, et al. Frequency Controllable Metamaterial Absorber by an Added Dielectric Layer[C]//. AIP conference proceedings, Malaysia, 2011, 1328: 318-320.
[139] Chen Yiguo, Li Xiong, Luo Xiangang, et al. Tunable near- infrared plasmonic perfect absorber based on phase-change materials[J]. Photonics Research, 2015, 3(3): 54-57. doi: 10.1364/PRJ.3.000054
[140] Chen Y G, Kao T S, Ng B, et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Optics Express, 2013, 21(11): 13691-13698. doi: 10.1364/OE.21.013691
[141] Kats M A, Sharma D, Lin Jiao, et al. Ultra-thin perfect absorber employing a tunable phase change material[J]. Applied Physics Letters, 2012, 101(22): 221101. doi: 10.1063/1.4767646
[142] Yao Yu, Shankar R, Kats M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Letters, 2014, 14(11): 6526-6532. doi: 10.1021/nl503104n
[143] Chen H T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119): 597-600. doi: 10.1038/nature05343
[144] Chen H T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 2009, 3(3): 148-151. doi: 10.1038/nphoton.2009.3
[145] Shen Nianhai, Massaouti M, Gokkavas M, et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 2011, 106(3): 037403. doi: 10.1103/PhysRevLett.106.037403
[146] Large N, Abb M, Aizpurua J, et al. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches[J]. Nano Letters, 2010, 10(5): 1741-1746. doi: 10.1021/nl1001636
[147] Tsakmakidis K L, Wartak M S, Cook J J H, et al. Negative-permeability electromagnetically induced transparent and magnetically active metamaterials[J]. Physical Review B, 2010, 81(19): 195128. doi: 10.1103/PhysRevB.81.195128
[148] Temnov V V, Armelles G, Woggon U, et al. Active magneto-plasmonics in hybrid metal-ferromagnet structures[J]. Nature Photonics, 2010, 4(2): 107-111. doi: 10.1038/nphoton.2009.265