基于迂回相位的轨道角动量Talbot阵列照明器

聂芳松,姜美玲,张明偲,等. 基于迂回相位的轨道角动量Talbot阵列照明器[J]. 光电工程,2020,47(6):200093. doi: 10.12086/oee.2020.200093
引用本文: 聂芳松,姜美玲,张明偲,等. 基于迂回相位的轨道角动量Talbot阵列照明器[J]. 光电工程,2020,47(6):200093. doi: 10.12086/oee.2020.200093
Nie F S, Jiang M L, Zhang M S, et al. Orbital angular momentum Talbot array illuminator based on detour phase encoding[J]. Opto-Electron Eng, 2020, 47(6): 200093. doi: 10.12086/oee.2020.200093
Citation: Nie F S, Jiang M L, Zhang M S, et al. Orbital angular momentum Talbot array illuminator based on detour phase encoding[J]. Opto-Electron Eng, 2020, 47(6): 200093. doi: 10.12086/oee.2020.200093

基于迂回相位的轨道角动量Talbot阵列照明器

  • 基金项目:
    国家自然科学基金资助项目(61605061,61875073);广东省自然科学基金资助项目(2016A030313088);广东省创新创业资助项目(2016ZT06D081)
详细信息
    作者简介:

    聂芳松(1994-),男,硕士研究生,主要从事激光加工微纳结构方面的研究。E-mail:315737726@qq.com

    通讯作者: 张明偲(1990-),男,博士,主要从事表面等离子体方面的研究。E-mail:mszhang@jnu.edu.cn 曹耀宇(1981-),男,博士,主要从事超分辨光学技术与应用的研究。E-mail:yaoyucao@jnu.edu.cn
  • 中图分类号: TM923

Orbital angular momentum Talbot array illuminator based on detour phase encoding

  • Fund Project: Supported by National Natural Science Foundation of China (61605061, 61875073), the Natural Science Foundation of Guangdong Province (2016A030313088), and Guangdong Provincial Innovation and Entrepreneurship Project (2016ZT06D081)
More Information
  • 轨道角动量(OAM)光束具有螺旋形相位分布,在信息光学、光捕获、光学操控等领域都有着重要的应用。本文设计了一种可以生成聚焦OAM光束的平面型光学器件。该器件利用迂回相位的编码方式,在平板上加载了根据分数Talbot效应计算得到的特定相位分布。使用时域有限差分(FDTD)分别对具有正方形和六边形周期性结构的光学器件进行仿真模拟。结果表明,平面波经过此器件可以转化为阵列型聚焦OAM光束。该器件加工方便,容易拼接或复制,集成度高,可以用来生成高质量大面积阵列型OAM光束。

  • 加载中
  • 图 1  (a), (b)正方形单周期Talbot相位板的(a)相位分布和(b) l = 1的螺旋相位分布;(c), (d)叠加轨道角动量的Talbot相位板的(c)总相位分布和其相应的(d)三维立体结构。

    Figure 1.  (a), (b) Single period of square Talbot phase plate phase distribution (a) and helical phase distribution for l = 1 (b); (c), (d) The total phase distribution (c) of Talbot phase distribution with orbital angular momentum and its three dimensional structure (d)

    图 2  (a), (b)迂回相位编码Talbot阵列照明器的正方形1×1像素(a)基元结构(其中d(m, n)为0相位中心位置偏移量,O1O2分别对应基元中心和0相位中心)和(b)位置偏移;(c), (d)迂回相位编码Talbot阵列照明器的(c)单周期和(d)3×3周期阵列结构

    Figure 2.  (a), (b) The square unit cell (a) of Talbot array illuminator based on detour phase encoding and its displacement (b) from the central position; (c), (d) One period (c) and 3×3 array structures (d) of Talbot array illuminator based on detour phase encoding

    图 3  (a), (b)迂回相位编码的正方形Talbot阵列照明器的(a) l=0和(b) l=+1的电场强度分布;(c), (d)分别是l=0和l=+1的FDTD模拟仿真计算结果;(e) l=+1的阵列型电场强度分布

    Figure 3.  (a), (b) Electric field intensity distribution of (a) l=0 and (b) l=+1 for square Talbot array illuminator based on detour phase encoding; (c), (d) The corresponding simulated results are shown in (c) and (d); (e) Electric field intensity distribution ofl=+1 for 5×5 Talbot array illuminator

    图 4  (a) 六边形单周期Talbot相位板的相位分布;(b) l=+1的螺旋相位分布;(c)迂回相位编码六边形Talbot阵列照明器的1×1像素基元结构;(d)迂回相位编码的六边形Talbot阵列照明器

    Figure 4.  (a) One period of hexagonal Talbot phase plate phase distribution; (b) Helical phase distribution for l=1; (c), (d) The unit cell (c) and one period of hexagonal (d) Talbot array illuminator based on detour phase encoding

    图 5  (a)~(d)迂回相位编码的六边形Talbot阵列照明器的(a) l=0, (b) l=+1, (c) l=-1和(d) l=+2的归一化电场强度分布;(e) l=+1的阵列型电场强度分布

    Figure 5.  (a)~(d) Normalized electric field intensity distribution of (a) l=0, (b) l=+1, (c) l=-1, and (d) l=+2 for hexagonal Talbot array illuminator based on detour phase encoding respectively; (e) Electric field intensity distribution of l=+1 for Talbot array illuminator

  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185

    [2]

    Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496. doi: 10.1038/nphoton.2012.138

    [3]

    Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548. doi: 10.1126/science.1237861

    [4]

    Vallone G, D'Ambrosio V, Sponselli A, et al. Free-space quantum key distribution by rotation-invariant twisted photons[J]. Physical Review Letters, 2014, 113(6): 060503. doi: 10.1103/PhysRevLett.113.060503

    [5]

    Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. doi: 10.1038/ncomms3061

    [6]

    曹耀宇, 谢飞, 张鹏达, 等.双光束超分辨激光直写纳米加工技术[J].光电工程, 2017, 44(12): 1133-1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 2017, 44(12): 1133-1145. doi: 10.3969/j.issn.1003-501X.2017.12.001

    [7]

    Lehmuskero A, Li Y M, Johansson P, et al. Plasmonic particles set into fast orbital motion by an optical vortex beam[J]. Optics Express, 2014, 22(4): 4349-4356. doi: 10.1364/OE.22.004349

    [8]

    Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816. doi: 10.1038/nature01935

    [9]

    Tao S H, Yuan X C, Lin J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726-7731. doi: 10.1364/OPEX.13.007726

    [10]

    Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays[J]. Optics Express, 2004, 12(6): 1144-1149. doi: 10.1364/OPEX.12.001144

    [11]

    Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science & Applications, 2017, 6(7): e17011. https://arxiv.org/pdf/1608.01220.pdf

    [12]

    Ouyang X, Xu Y, Feng Z W, et al. Polychromatic and polarized multilevel optical data storage[J]. Nanoscale, 2019, 11(5): 2447-2452. doi: 10.1039/C8NR09192G

    [13]

    Li X P, Cao Y Y, Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567-570. doi: 10.1364/OPTICA.2.000567

    [14]

    欧阳旭, 徐毅, 冼铭聪, 等.基于无序金纳米棒编码的多维光信息存储[J].光电工程, 2019, 46(3): 180584. doi: 10.12086/oee.2019.180584

    Ouyang X, Xu Y, Xian M C, et al. Encoding disorder gold nanorods for multi-dimensional optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180584. doi: 10.12086/oee.2019.180584

    [15]

    姜美玲, 张明偲, 李向平, 等.超分辨光存储研究进展[J].光电工程, 2019, 46(3): 180649. doi: 10.12086/oee.2019.180649

    Jiang M L, Zhang M S, Li X P, et al. Research progress of super-resolution optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180649. doi: 10.12086/oee.2019.180649

    [16]

    Campbell G, Hage B, Buchler B, et al. Generation of high-order optical vortices using directly machined spiral phase mirrors[J]. Applied Optics, 2012, 51(7): 873-876. doi: 10.1364/AO.51.000873

    [17]

    Wei D Z, Wu Y, Wang Y M, et al. Survival of the orbital angular momentum of light through an extraordinary optical transmission process in the paraxial approximation[J]. Optics Express, 2016, 24(11): 12007-12012. doi: 10.1364/OE.24.012007

    [18]

    Beresna M, Gecevičius M, Kazansky P G, et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass[J]. Applied Physics Letters, 2011, 98(20): 201101. doi: 10.1063/1.3590716

    [19]

    Nersisyan S R, Tabiryan N V, Mawet D, et al. Improving vector vortex waveplates for high-contrast coronagraphy[J]. Optics Express, 2013, 21(7): 8205-8213. doi: 10.1364/OE.21.008205

    [20]

    Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905

    [21]

    Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316. doi: 10.1038/35085529

    [22]

    Wei B Y, Hu W, Ming Y, et al. Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals[J]. Advanced Materials, 2014, 26(10): 1590-1595. doi: 10.1002/adma.201305198

    [23]

    Wang X L, Lou K, Chen J, et al. Unveiling locally linearly polarized vector fields with broken axial symmetry[J]. Physical Review A, 2011, 83(6): 063813. doi: 10.1103/PhysRevA.83.063813

    [24]

    Wang X L, Chen J, Li Y N, et al. Optical orbital angular momentum from the curl of polarization[J]. Physical Review Letters, 2010, 105(25): 253602. doi: 10.1103/PhysRevLett.105.253602

    [25]

    Wang X L, Li Y N, Chen J, et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 2010, 18(10): 10786-10795. doi: 10.1364/OE.18.010786

    [26]

    Cai X L, Wang J W, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366. doi: 10.1126/science.1226528

    [27]

    Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839

    [28]

    Karimi E, Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167. https://www.nature.com/articles/lsa201448

    [29]

    Talbot H F. LXXVI. Facts relating to optical science. No. Ⅳ[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1836, 9(56): 401-407. doi: 10.1080/14786443608649032

    [30]

    Rayleigh L. XXV. On copying diffraction-gratings, and on some phenomena connected therewith[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1881, 11(67): 196-205. doi: 10.1080/14786448108626995

    [31]

    Zhu L W, Yin X, Hong Z P, et al. Reciprocal vector theory for diffractive self-imaging[J]. Journal of the Optical Society of America A, 2008, 25(1): 203-210. doi: 10.1364/JOSAA.25.000203

    [32]

    Li Z G, Yang R, Sun M Y, et al. Detour phase Talbot array illuminator[J]. Chinese Optics Letters, 2019, 17(7): 070501. doi: 10.3788/COL201917.070501

    [33]

    Brown B R, Lohmann A W. Complex spatial filtering with binary masks[J]. Applied Optics, 1966, 5(6): 967-969. doi: 10.1364/AO.5.000967

    [34]

    Lohmann A W, Paris D P. Binary fraunhofer holograms, generated by computer[J]. Applied Optics, 1967, 6(10): 1739-1748. doi: 10.1364/AO.6.001739

  • 加载中

(5)

计量
  • 文章访问数:  3295
  • PDF下载数:  1582
  • 施引文献:  0
出版历程
收稿日期:  2020-03-19
修回日期:  2020-05-09
刊出日期:  2020-06-01

目录