水下无线光通信链路构成与性能优化进展

张雨凡,李鑫,吕伟超,等. 水下无线光通信链路构成与性能优化进展[J]. 光电工程,2020,47(9):190734. doi: 10.12086/oee.2020.190734
引用本文: 张雨凡,李鑫,吕伟超,等. 水下无线光通信链路构成与性能优化进展[J]. 光电工程,2020,47(9):190734. doi: 10.12086/oee.2020.190734
Zhang Y F, Li X, Lv W C, et al. Link structure of underwater wireless optical communication and progress on performance optimization[J]. Opto-Electron Eng, 2020, 47(9): 190734. doi: 10.12086/oee.2020.190734
Citation: Zhang Y F, Li X, Lv W C, et al. Link structure of underwater wireless optical communication and progress on performance optimization[J]. Opto-Electron Eng, 2020, 47(9): 190734. doi: 10.12086/oee.2020.190734

水下无线光通信链路构成与性能优化进展

  • 基金项目:
    国家重点研发计划资助项目(2016YFC0302403);中国科学院战略性先导科技专项(A类)(XDA22030208)
详细信息
    作者简介:

    张雨凡(1998-),男,博士研究生,主要从事水下无线光通信的研究。E-mail:3160102403@zju.edu.cn

    通讯作者: 徐敬(1982-),男,博士,教授,主要从事水下无线光通信、深海观测技术的研究。E-mail:jxu-optics@zju.edu.cn
  • 中图分类号: TN929.1

Link structure of underwater wireless optical communication and progress on performance optimization

  • Fund Project: Supported by National Key R&D Program of China (2016YFC0302403) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA22030208)
More Information
  • 水下无线光通信(UWOC)可为水下平台提供高速灵活的通信选择。本文介绍了UWOC的基本链路构成,并指出UWOC系统的优化方案。吸收、散射和湍流都会影响UWOC的性能,深入研究信道特性可以指导发射器、接收器和相关信号处理技术的设计。UWOC性能还能够通过复用技术、单光子探测技术和对准系统等进行优化。功能全面的测试平台可以为UWOC系统提供必要的测试环境,为海试与工业化应用奠定基础。本文期望能为UWOC相关研究者带来帮助。

  • 加载中
  • 图 1  水下光通信应用场景

    Figure 1.  The demand of wireless communication in human underwater activities

    图 2  近年来水下无线光通信部分进展

    Figure 2.  Research progress on UWOC in recent years

    图 3  水下无线光通信系统的基本框图

    Figure 3.  The block diagram of underwater wireless optical communication system

    图 4  激光在不同水体中传播不同距离后接收端能量分布。

    Figure 4.  The received optical power distribution of a laser beam after passing through a (a) 4 m, (b) 8 m, (c) 12 m costal water channel; (d) 4 m, (e) 8 m, (f) 12 m harbor water channel

    图 5  蒙特卡罗方法仿真的两种波长光在8 m长港口海水中的(a)脉冲响应和(b)频率响应

    Figure 5.  (a) Impulse response and (b) frequency response in 8 m harbor water with different wavelengths based on Monte Carlo simulation

    图 6  (a) 基于MPPC的UWOC系统实验装置图

    Figure 6.  (a) Experiment setup of a MPPC based UWOC system.

    图 7  测试波流水池

    Figure 7.  Test basin

    表 1  不同种类水体的典型参数

    Table 1.  Typical parameters for different water types

    Water types a b c
    Clear water 0.114 0.037 0.151
    Coastal water 0.179 0.219 0.398
    Harbor water 0.366 1.824 2.190
    下载: 导出CSV
  • [1]

    Vedachalam N, Ramesh R, Jyothi V B N, et al. Autonomous underwater vehicles-challenging developments and technological maturity towards strategic swarm robotics systems[J]. Marine Georesources & Geotechnology, 2019, 37(5): 525–538. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1080/1064119X.2018.1453567

    [2]

    Saeed N, Celik A, Al-Naffouri T Y, et al. Underwater optical wireless communications, networking, and localization: a survey[J]. Ad Hoc Networks, 2019, 94: 101935. doi: 10.1016/j.adhoc.2019.101935

    [3]

    Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84–89. doi: 10.1109/MCOM.2009.4752682

    [4]

    Au W W, Nachtigall P E, Pawloski J L. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales[J]. The Journal of the Acoustical Society of America, 1997, 101(5): 2973–2977. doi: 10.1121/1.419304

    [5]

    Zeng Z Q, Fu S, Zhang H H, et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 204–238. http://cn.bing.com/academic/profile?id=0acf7c1a4ed0cd6ec4fa5c0d543691f5&encoded=0&v=paper_preview&mkt=zh-cn

    [6]

    Strand M P. Imaging model for underwater range-gated imaging systems[J]. Proceedings of SPIE, 1991, 1537: 151–160. doi: 10.1117/12.48880

    [7]

    Tang S J, Dong Y H, Zhang X D. Impulse response modeling for underwater wireless optical communication links[J]. IEEE Transactions on Communications, 2014, 62(1): 226–234. doi: 10.1109/TCOMM.2013.120713.130199

    [8]

    Karp S. Optical communications between underwater and above surface (Satellite) terminals[J]. IEEE Transactions on Communications, 1976, 24(1): 66–81. doi: 10.1109/TCOM.1976.1093200

    [9]

    Longacre J R, Freeman D E, Snow J B. High-data-rate underwater laser communications[J]. Proceedings of SPIE, 1990, 1302: 433–439. doi: 10.1117/12.21462

    [10]

    Snow J B, Flatley J P, Freeman D E, et al. Underwater propagation of high-data-rate laser communications pulses[J]. Proceedings of SPIE, 1992, 1750: 419–427. doi: 10.1117/12.140670

    [11]

    Hanson F, Radic S. High bandwidth underwater optical communication[J]. Applied Optics, 2008, 47(2): 277–283. doi: 10.1364/AO.47.000277

    [12]

    Lu D L, Kan J J, Fullerton E E, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J]. Nature Nanotechnology, 2014, 9(1): 48–53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=da1ebc10c3e5dc44bf06d9dcdf424726

    [13]

    Shen C, Guo Y J, Oubei H M, et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 2016, 24(22): 25502–25509. doi: 10.1364/OE.24.025502

    [14]

    Xu J, Song Y H, Yu X Y, et al. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser[J]. Optics Express, 2016, 24(8): 8097–8109. doi: 10.1364/OE.24.008097

    [15]

    Lu H H, Li C Y, Lin H H, et al. An 8 m/9.6 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2016, 8(5): 7906107. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a82bd132fa7e5acc65b0e10cf1260ae

    [16]

    Kong M W, Lv W C, Ali T, et al. 10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication[J]. Optics Express, 2017, 25(17): 20829–20834. doi: 10.1364/OE.25.020829

    [17]

    Huang Y F, Tsai C T, Chi Y C, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission[J]. Journal of Lightwave Technology, 2018, 36(9): 1739–1745. doi: 10.1109/JLT.2017.2782840

    [18]

    Li C Y, Lu H H, Tsai W S, et al. 16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques[J]. Optics Express, 2017, 25(10): 11598–11605. doi: 10.1364/OE.25.011598

    [19]

    Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937–27947. doi: 10.1364/OE.25.027937

    [20]

    Fei C, Hong X J, Zhang G W, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26): 34060–34069. doi: 10.1364/OE.26.034060

    [21]

    Fei C, Zhang J W, Zhang G W, et al. Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J]. Journal of Lightwave Technology, 2018, 36(3): 728–734. doi: 10.1109/JLT.2017.2780841

    [22]

    Hong X J, Fei C, Zhang G W, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit[J]. Optics Letters, 2019, 44(3): 558–561. doi: 10.1364/OL.44.000558

    [23]

    Lu C H, Wang J M, Li S B, et al. 60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]//Proceedings of 2019 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2019: 1–2.

    [24]

    Wang J M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171–12181. doi: 10.1364/OE.27.012171

    [25]

    Bluecomm 100-wireless underwater optical communication[EB/OL]. https://www.sonardyne.com/product/bluecomm-underwater-optical-communication-system/.

    [26]

    Baykal Y. Scintillations of LED sources in oceanic turbulence[J]. Applied Optics, 2016, 55(31): 8860–8863. doi: 10.1364/AO.55.008860

    [27]

    Shi J Y, Zhu X, Wang F M, et al. Net data rate of 14.6 Gbit/s underwater VLC utilizing silicon substrate common-anode five primary colors LED[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 2019: 1–3.

    [28]

    Wang F M, Liu Y F, Jiang F Y, et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J]. Optics Communications, 2018, 425: 106–112. doi: 10.1016/j.optcom.2018.04.073

    [29]

    Tian P F, Liu X Y, Yi S Y, et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 2017, 25(2): 1193–1201. doi: 10.1364/OE.25.001193

    [30]

    Xu J, Kong M W, Lin A B, et al. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J]. Optics Letters, 2017, 42(9): 1664–1667. doi: 10.1364/OL.42.001664

    [31]

    Li C Y, Lu H H, Tsai W S, et al. A 5 m/25 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2018, 10(3): 7904909.

    [32]

    Kong M W, Chen Y F, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3): 3087–3097. doi: 10.1364/OE.26.003087

    [33]

    Zhuang B, Li C, Wu N, et al. First demonstration of 400Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2017: 1–2.

    [34]

    Sui M H, Zhou Z G. The modified PPM modulation for underwater wireless optical communication[C]//Proceedings of 2009 International Conference on Communication Software and Networks, Macau, China, 2009: 173–177.

    [35]

    Hu S, Mi L, Zhou T H, et al. 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM[J]. Optics Express, 2018, 26(17): 21685–21699. doi: 10.1364/OE.26.021685

    [36]

    杜劲松.基于LDPC编码与PPM调制的水下光通信研究[D].南京: 南京邮电大学, 2017.

    Du J S. Research on underwater optical communication based on LDPC and PPM[D]. Nanjing: Nanjing University of Posts And Telecommunications, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10293-1017859218.htm

    [37]

    Mi X L, Dong Y H. Polarized digital pulse interval modulation for underwater wireless optical communications[C]//Proceedings of OCEANS 2016 - Shanghai, Shanghai, China, 2016: 1–4.

    [38]

    肖嵩.无线信道中的联合信源信道编码研究[D].西安: 西安电子科技大学, 2004.

    Xiao S. Researches on joint source channel coding in wireless channel[D]. Xi'an: Xidian University, 2004.

    [39]

    Cox W C, Simpson J A, Domizioli C P, et al. An underwater optical communication system implementing Reed-Solomon channel coding[C]//Proceedings of OCEANS 2008, Quebec City, QC, Canada, 2008: 1–6.

    [40]

    Mattoussi F, Khalighi M A, Bourennane S. Improving the performance of underwater wireless optical communication links by channel coding[J]. Applied Optics, 2018, 57(9): 2115–2120. doi: 10.1364/AO.57.002115

    [41]

    Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. Journal of Lightwave Technology, 2007, 25(1): 109–121. doi: 10.1109/JLT.2006.888481

    [42]

    Cova S, Ghioni M, Lacaita A, et al. Avalanche photodiodes and quenching circuits for single-photon detection[J]. Applied Optics, 1996, 35(12): 1956–1976. doi: 10.1364/AO.35.001956

    [43]

    Zhang Z J, Zhao Y, Zhang J D, et al. Ranging accuracy improvement of time-correlated signal-photon counting lidar[J]. Proceedings of SPIE, 2017, 10605: 106050C. http://cn.bing.com/academic/profile?id=d5a6c18611f12bc9d79a79a997f2f166&encoded=0&v=paper_preview&mkt=zh-cn

    [44]

    Li C, Wang B K, Wang P L, et al. Generation and transmission of 745Mb/s ofdm signal using a single commercial blue LED and an analog post-equalizer for underwater optical wireless communications[C]//Proceedings of 2016 Asia Communications and Photonics Conference, Wuhan, China, 2016: 1–3.

    [45]

    Zhang Z Y, Lai Y J, Lv J L, et al. Over 700 MHz –3 dB bandwidth UOWC system based on blue HV-LED with T-bridge pre-equalizer[J]. IEEE Photonics Journal, 2019, 11(3): 7903812.

    [46]

    Ren Y X, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 2016, 6: 33306. doi: 10.1038/srep33306

    [47]

    Mobley C D. Light and Water: Radiative Transfer in Natural Waters[M]. New York: Academic Press, 1994.

    [48]

    Petzold T J. Volume Scattering Functions for Selected Ocean Waters[M]. San Diego: Scripps Institution of Oceanography, 1972.

    [49]

    Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 513–521. doi: 10.1109/JOE.2008.2005341

    [50]

    Jaruwatanadilok S. Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory[J]. IEEE Journal on Selected areas in Communications, 2008, 26(9): 1620–1627. doi: 10.1109/JSAC.2008.081202

    [51]

    Gabriel C, Khalighi M A, Bourennane S, et al. Monte-carlo-based channel characterization for underwater optical communication systems[J]. IEEE/OSA Journal of Optical Communications and Networking, 2013, 5(1): 1–12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d2a660933f65f6aa98df011d8d4518a1

    [52]

    Haltrin V I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater[J]. Applied Optics, 2002, 41(6): 1022–1028. doi: 10.1364/AO.41.001022

    [53]

    Sahu S K, Shanmugam P. Semi-analytical modeling and parameterization of particulates-in-water phase function for forward angles[J]. Optics Express, 2015, 23(17): 22291–22307. doi: 10.1364/OE.23.022291

    [54]

    Sahu S K, Shanmugam P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J]. Optics Communications, 2018, 408: 3–14. doi: 10.1016/j.optcom.2017.06.030

    [55]

    Vali Z, Gholami A, Ghassemlooy Z, et al. Experimental study of the turbulence effect on underwater optical wireless communications[J]. Applied Optics, 2018, 57(28): 8314–8319. doi: 10.1364/AO.57.008314

    [56]

    Ooi B S, Sun X B, Alkhazragi O, et al. Visible diode lasers for high bitrate underwater wireless optical communications[C]//Proceedings of Optical Fiber Communication Conference 2019, San Diego, CA, USA, 2019.

    [57]

    Yi X, Li Z, Liu Z J. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence[J]. Applied Optics, 2015, 54(6): 1273–1278. doi: 10.1364/AO.54.001273

    [58]

    Oubei H M, Zedini E, ElAfandy R T, et al. Efficient weibull channel model for salinity induced turbulent underwater wireless optical communications[C]//Proceedings of 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference, Singapore, Singapore, 2017: 1–2.

    [59]

    Oubei H M, Zedini E, ElAfandy R T, et al. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems[J]. Optics Letters, 2017, 42(13): 2455–2458. doi: 10.1364/OL.42.002455

    [60]

    Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. Optics Express, 2015, 23(18): 23302–23309. doi: 10.1364/OE.23.023302

    [61]

    Xu J, Lin A B, Yu X Y, et al. Underwater laser communication using an OFDM-modulated 520-nm laser diode[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2133–2136. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=93ee36610210e6b4df7b4372ad43519d

    [62]

    Sullivan S A. Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum[J]. Journal of the Optical Society of America, 1963, 53(8): 962–968. http://cn.bing.com/academic/profile?id=2603dec1c3419b5e7a3d329dc291df42&encoded=0&v=paper_preview&mkt=zh-cn

    [63]

    Gilbert G D, Stoner T R, Jernigan J L. Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser[J]. Proceedings of SPIE, 1966, 7: 8–14. http://cn.bing.com/academic/profile?id=b161aa357688889541d79f7689bfc0b0&encoded=0&v=paper_preview&mkt=zh-cn

    [64]

    Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214–233. https://www.osapublishing.org/josa/abstract.cfm?uri=josa-53-2-214

    [65]

    Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 2016, 24(9): 9794–9805. http://cn.bing.com/academic/profile?id=9882e649f1c49ec4f4aa905b5703797a&encoded=0&v=paper_preview&mkt=zh-cn

    [66]

    王超.水下可见光通信单光子检测关键技术研究[D].郑州: 战略支援部队信息工程大学, 2018.

    Wang C. Research on the key technology of singlephoton detection in underwater visible light communications[D]. Zhengzhou: Information Engineering University, 2018.http://cdmd.cnki.com.cn/Article/CDMD-91037-1018841747.htm

    [67]

    Wang C, Yu H Y, Zhu Y J, et al. Experimental study on SPAD-based VLC systems with an LED status indicator[J]. Optics Express, 2017, 25(23): 28783–28793. http://cn.bing.com/academic/profile?id=5a433334c786452118434d079381910b&encoded=0&v=paper_preview&mkt=zh-cn

    [68]

    Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche diode[J]. IEEE Photonics Journal, 2016, 8(5): 7906311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31ae8c57d9e9780d2aa8cc8ff590a2f8

    [69]

    Wang J L, Yang X Q, Lv W C, et al. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J]. Optics Communications, 2019, 451: 181–185. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8cfba161bc395d70ea00a676acc6fa58

    [70]

    Hamza T, Khalighi M A, Bourennane S, et al. On the suitability of employing silicon photomultipliers for underwater wireless optical communication links[C]//Proceedings of the 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing, Prague, Czech Republic, 2016: 1–5.

    [71]

    Khalighi M A, Hamza T, Bourennane S, et al. Underwater wireless optical communications using silicon photo-multipliers[J]. IEEE Photonics Journal, 2017, 9(4): 7905310. http://cn.bing.com/academic/profile?id=fd5447173287d78c7335f12bcf04872b&encoded=0&v=paper_preview&mkt=zh-cn

    [72]

    Shen J N, Wang J L, Yu C Y, et al. Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output[J]. Optics Communications, 2019, 438: 78–82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a467bcd9450a8b6ed12ff7c1a7e6b122

    [73]

    Shen J N, Wang J L, Chen X, et al. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J]. Optics Express, 2018, 26(18): 23565–23571. http://cn.bing.com/academic/profile?id=3969ce4ed40a5fff52483440ae2b5be2&encoded=0&v=paper_preview&mkt=zh-cn

    [74]

    韩彪, 赵卫, 汪伟, 等.面向水下应用的改进型光子计数通信方法[J].光学学报, 2016, 36(8): 0806004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201608007

    Han B, Zhao W, Wang W, et al. Modified photon counting communication method for underwater application[J]. Acta Optica Sinica, 2016, 36(8): 0806004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201608007

    [75]

    Tang S J, Dong Y H, Zhang X D. On link misalignment for underwater wireless optical communications[J]. IEEE Communications Letters, 2012, 16(10): 1688–1690. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e55e8701c59c19f98314d73f6b1787e7

    [76]

    Zhang H H, Dong Y H. Link misalignment for underwater wireless optical communications[C]//Proceedings of 2015 Advances in Wireless and Optical Communications, Riga, Latvia, 2015: 215–218.

    [77]

    Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication: state-of-the-art, opportunities, challenges, and trends[J]. Chinese Optics Letters, 2019, 17(10): 100002. http://cn.bing.com/academic/profile?id=ff56b61ffc4a2c989ec7d5a2e751171b&encoded=0&v=paper_preview&mkt=zh-cn

    [78]

    Cai C K, Zhao Y F, Zhang J Y, et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment system[C]//Proceedings of Optical Fiber Communication Conference 2019, San Diego, CA, USA, 2019: 1–3.

    [79]

    Kong M W, Sun B, Sarwar R, et al. Underwater wireless optical communication using a lens-free solar panel receiver[J]. Optics Communications, 2018, 426: 94–98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66d5c2fcda2ae9a0874b93f39455b1ef

    [80]

    Kong M W, Lin J M, Kang C H, et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells[J]. Optics Express, 2019, 27(24): 34542–34551. http://cn.bing.com/academic/profile?id=687d15e2d5100b975487dafff016fc47&encoded=0&v=paper_preview&mkt=zh-cn

    [81]

    Zhang H H, Dong Y H, Hui L K. On capacity of downlink underwater wireless optical MIMO systems with random sea surface[J]. IEEE Communications Letters, 2015, 19(12): 2166–2169. http://cn.bing.com/academic/profile?id=7a3426480040bcbe3d7722f063513ebb&encoded=0&v=paper_preview&mkt=zh-cn

    [82]

    Zhang H H, Dong Y H. Impulse response modeling for general underwater wireless optical MIMO links[J]. IEEE Communications Magazine, 2016, 54(2): 56–61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a9f48131a4ca24fa52227dabef956f1

    [83]

    Jamali M V, Salehi J A. On the BER of multiple-input multiple-output underwater wireless optical communication systems[C]//Proceedings of the 2015 4th International Workshop on Optical Wireless Communications, Istanbul, Turkey, 2015: 26–30.

    [84]

    Jamali M V, Nabavi P, Salehi J A. MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8223–8237. http://cn.bing.com/academic/profile?id=16a70983216365c5b93d3c40d6b909a3&encoded=0&v=paper_preview&mkt=zh-cn

    [85]

    Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme[J]. IEEE Transactions on Communications, 2017, 65(3): 1176–1192. http://cn.bing.com/academic/profile?id=2644bf59fcf5342e73bb97f3980e69df&encoded=0&v=paper_preview&mkt=zh-cn

    [86]

    Cossu G, Sturniolo A, Messa A, et al. Sea-trial of optical ethernet modems for underwater wireless communications[J]. Journal of Lightwave Technology, 2018, 36(23): 5371–5380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7dc7a22e690847a52a6f4cdb8f78e51e

    [87]

    Sawa T, Nishimura N, Tojo K, et al. Practical performance and prospect of underwater optical wireless communication:——results of optical characteristic measurement at visible light band under water and communication tests with the prototype modem in the sea[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2019, E102-A(1): 156–167. doi: 10.1587/transfun.E102.A.156

    [88]

    Akhoundi F, Salehi J A, Tashakori A. Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts[J]. IEEE Transactions on Communications, 2015, 63(3): 882–891. http://cn.bing.com/academic/profile?id=744e5bc63a302f551919d043d6423d18&encoded=0&v=paper_preview&mkt=zh-cn

    [89]

    Vavoulas A, Sandalidis H G, Varoutas D. Underwater optical wireless networks: ak-connectivity analysis[J]. IEEE Journal of Oceanic Engineering, 2014, 39(4): 801–809.

    [90]

    Jamali M V, Akhoundi F, Salehi J A. Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 4104–4116. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf18a66c2d0533c82076f9ad326cae6d

    [91]

    Jamali M V, Chizari A, Salehi J A. Performance analysis of multi-hop underwater wireless optical communication systems[J]. IEEE Photonics Technology Letters, 2017, 29(5): 462–465. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=705b0229280981695dcc8e34f524076b

    [92]

    Celik A, Saeed N, Al-Naffouri T Y, et al. Modeling and performance analysis of multihop underwater optical wireless sensor networks[C]//Proceedings of 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6.

    [93]

    Xu J, Sun B, Lyu W C, et al. Underwater fiber–wireless communication with a passive front end[J]. Optics Communications, 2017, 402: 260–264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6edefe9a6ecae66cf40456c73bec185f

    [94]

    Xu J, Sun B, Kong M W, et al. Underwater wireless optical communication using a blue-light leaky feeder[J]. Optics Communications, 2017, 397: 51–54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=726a1aedccee28577cbec254f622a3e0

  • 加载中

(7)

(1)

计量
  • 文章访问数:  2453
  • PDF下载数:  1835
  • 施引文献:  0
出版历程
收稿日期:  2019-12-16
修回日期:  2020-03-02
刊出日期:  2020-09-15

目录