经纬仪跟踪与激光指向一致性问题研究

贾文武,张三喜,雷涛. 经纬仪跟踪与激光指向一致性问题研究[J]. 光电工程,2020,47(9):190438. doi: 10.12086/oee.2020.190438
引用本文: 贾文武,张三喜,雷涛. 经纬仪跟踪与激光指向一致性问题研究[J]. 光电工程,2020,47(9):190438. doi: 10.12086/oee.2020.190438
Jia W W, Zhang S X, Lei T. The consistent of laser pointing and theodolite tracking[J]. Opto-Electron Eng, 2020, 47(9): 190438. doi: 10.12086/oee.2020.190438
Citation: Jia W W, Zhang S X, Lei T. The consistent of laser pointing and theodolite tracking[J]. Opto-Electron Eng, 2020, 47(9): 190438. doi: 10.12086/oee.2020.190438

经纬仪跟踪与激光指向一致性问题研究

  • 基金项目:
    武器装备军内科研资助项目(012016018200A13302)
详细信息
    作者简介:
    通讯作者: 贾文武, E-mail: jww4891@163.com
  • 中图分类号: TJ760.6

The consistent of laser pointing and theodolite tracking

  • Fund Project: Supported by Military Research on Weapons and Equipment Fund (012016018200A13302)
More Information
  • 针对激光光轴与经纬仪跟踪光轴的轴间距离(移轴)以及光轴平行性误差造成经纬仪跟踪位置与激光指向位置不一致问题开展研究。对离轴和平行性误差的影响进行了分析,表明大的移轴量和平行性误差将导致激光指向和经纬仪跟踪指向的不一致,进而导致激光测距盲区增大、作用距离下降、目标定位精度降低等问题。提出一种基于偏置跟踪的激光指向动态修正方法,通过使目标始终位于激光光束中心,同时使得激光测距位置和经纬仪跟踪锁定位置保持一致,有效解决了激光边缘能量下降对作用距离的影响,针对某型经纬仪可使目标的测距盲区从1 km下降到82 m。同时针对偏置跟踪算法需要目标初始距离以启动偏置跟踪的问题,提出初始距离未知目标一维搜索方法,大大提高了对初始距离未知目标的搜索效率。本文方法较好地解决了经纬仪跟踪位置与激光指向位置的一致性问题,大大降低了对激光光轴与经纬仪跟踪光轴的移轴与平行性限制。

  • Overview: As using laser ranger on theodolite to measuring the target's location in range test, it's common that the laser optical axis is a large distance (off-boresight) and weak parallelism with the tracking optical axis. It means that the location of laser pointing and the location of theodolite tracking is different. The influences of off-boresight and parallelism error are analyzed first. A broader off-boresight can cause larger ranging bind regions. The parallelism error may decrease the detecting distance when it corresponds to the laser divergence, and the laser pointing location is changing as the target moving, this decreases the accuracy of the location. It's common to decrease the off-boresight and parallelism error of the laser optical axis. But large off-boresight and parallelism error are unavoidable for some cases. A laser pointing dynamic correction method based on bias tracking is prompt to make the laser pointing the same with theodolite tracking. It keeps the target in the center of the laser beam by bais tracking other than in the center of the tracking field of view. As the laser is gauss distribution, the target in the center of the laser beam reflects more laser energy, this helps to increase the operating distance of laser ranger. It can decrease the blind region of the laser range greatly by changing the laser pointing and always aiming at the target. To a theodolite with 0.627°×0.470° tracking field of view and 590 mm off-boresight, it can reduce the blind region from 1000 meters to 82 meters. As the track locking location is the same with the laser pointing location, it helps to increase the location accuracy. When the original distance is unknown, it has to search the distance of the target. A one-dimensional search method for distance unknown target is prompted too. As it searches the target only in distance, it scans only a single line in the imaging field. So it can decrease the points of searching and improve the searching efficiency greatly comparing to traditional two-dimensional searching methods. For an imaging field of 3.7°×2.9° and searching step of 0.014°, it can reduce the scanning points from 258×202 points to 128 points. Thus by bias tracking and one-dimensional searching, the consistency of laser pointing and theodolite tracking is overcome. It releases the limits of off borsights and parallelism error to the laser optical axis and tracking optical axis. This helps to decrease the cost of theodolite, and is valuable to improve the accuracy of exterior trajectory parameters.

  • 加载中
  • 图 1  激光移轴对距离测量的影响

    Figure 1.  The influence of off boresight to range detecting

    图 2  光轴平行性误差影响示意图

    Figure 2.  The influence of parallelism error

    图 3  跟踪偏置量计算示意图

    Figure 3.  The offset value of bias tracking

    图 4  改造前经纬仪跟踪流程

    Figure 4.  The tracking procedure of theodolite before rebuilding

    图 5  改造后经纬仪偏置跟踪流程

    Figure 5.  The tracking procedure of theodolite after rebuilding

    图 6  搜索扫描曲线。(a)玫瑰扫描; (b)利萨如扫描;(c)逐行扫描;(d)螺旋扫描

    Figure 6.  Searching cure. (a) Rose curve scanning, (b) Lissajous curve; (c) Branch scanning; (d) Spiral scanning

    图 7  某型光电经纬仪负载分布图

    Figure 7.  The loads of a kind of theodolite

    图 8  激光束中心目标成像位置。(a)模拟激光束及激光光轴指向;(b)可见光成像系统中的成像;(c)在红外捕获系统中的成像

    Figure 8.  The imaging location of target in center of laser beam. (a) Simulating laser beam and its pointing; (b) The imaging location in visible imaging system; (c) The imaging location in infrared capture system

    图 9  搜索路径。(a)可见光测量跟踪系统搜索路径;(b)红外捕获跟踪系统搜索路径

    Figure 9.  Searching path. (a) Searching path for the visible imaging system; (b) Searching path for the infrared capture system

  • [1]

    丁宇星, 李永富, 刘鸿彬, 等.基于InGaAs探测器的日光条件光子计数试验[J].中国激光, 2018, 45(11): 1104003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201811021

    Ding Y X, Li Y F, Liu H B, et al. Photo counting experiment based on InGaAs detector in daylight[J]. Chinese Journal of Lasers, 2018, 45(11): 1104003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201811021

    [2]

    谢庚承, 叶一东, 雒仲祥, 等.飞行目标脉冲激光测距的回光稳定性[J].激光与光电子学进展, 2018, 55(9): 091207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201809028

    Xie G C, Ye Y D, Luo Z X, et al. Light echo stability of pulsed laser ranging of flight targets[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091207. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201809028

    [3]

    张兴国, 韩涛, 李靖.舰载环境下光电经纬仪的引导与实现[J].光电工程, 2017, 44(5): 511–515. doi: 10.3969/j.issn.1003-501X.2017.05.006

    Zhang X G, Han T, Li J. Guidance and implementation of photoelectric theodolite in shipborne environment[J]. Opto-Electronic Engineering, 2017, 44(5): 511–515. doi: 10.3969/j.issn.1003-501X.2017.05.006

    [4]

    谭碧涛.跟踪发射望远镜共光路成像探测性能研究[D].成都: 中国科学院研究生院(光电技术研究所), 2016: 2–4.

    Tan B T. Study on imaging and detecting performance of telescopes for tracking and launching in common path[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2016: 2–4.http://cdmd.cnki.com.cn/Article/CDMD-80151-1016757846.htm

    [5]

    李晶, 车英, 王加安, 等.折反射共光路多谱段激光雷达光学系统设计[J].中国激光, 2018, 45(5): 0510008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201805037

    Li J, Che Y, Wang J A, et al. Optical system design for multi-spectral laser radar with refraction and reflection in Co-path[J]. Chinese Journal of Lasers, 2018, 45(5): 0510008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201805037

    [6]

    赛奥里斯.导弹制导与控制系统[M].张天光, 译.北京: 国防工业出版社, 2010.

    Simirk G M. Missile Guidance and Control Systems[M]. Zhang T G, trans. Beijing: National Defense Industry Press, 2010.

    [7]

    配合滚仰式跟踪平台的偏置+比例复合导引律[J].信息系统工程, 2011(6): 144–145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxxtgc201106067

    [8]

    方斌.红外成像导引头抗干扰研究[J].弹箭与制导学报, 2003, 23(4): 19–21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=djyzdxb200304006

    Fang B. Study on ⅡR seeker CCM[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003, 23(4): 19–21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=djyzdxb200304006

    [9]

    张海波, 马勇辉, 季东, 等.一种提高光电跟踪设备捕获概率的搜索方法[J].红外与激光工程, 2016, 45(2): 0217003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201602029

    Zhang H B, Ma Y H, Ji D, et al. Search method to improve acquisition probability for optoelectronic tracking device[J]. Infrared and Laser Engineering, 2016, 45(2): 0217003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201602029

    [10]

    陈德毅.三轴光电跟踪设备对在轨目标捕获策略的研究[D].成都: 中国科学院光电技术研究所, 2018: 39–43.

    Chen D Y. Study on the acquisition strategy of three-axis photoelectric tracking equipment on orbit[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2018: 39–43.http://cdmd.cnki.com.cn/Article/CDMD-80151-1018828912.htm

  • 加载中

(9)

计量
  • 文章访问数:  6290
  • PDF下载数:  1613
  • 施引文献:  0
出版历程
收稿日期:  2019-07-24
修回日期:  2019-11-29
刊出日期:  2020-09-15

目录

/

返回文章
返回